风力助推转子作为一种主动式船舶节能装备,其外筒的重量与强度直接关系着风力助推转子系统的节能效益与安全性能。因此,本文针对风力助推转子复合材料外筒结构,开展结构应力特性分析及强度校核,并基于分析结果采用NSGA-Ⅱ法开展多目标优化分析。结果表明,复合材料外筒强度满足规范要求,且筒体及加强筋所承受的应力最大;相比于优化前的结果,优化后的复合材料外筒质量降低了16.78%,最大应力降低了21.85%,显著减轻了外筒的质量、提高了外筒的强度,为风力助推转子外筒的设计提供了指导性建议。
As an active energy-saving equipment for ships, the weight and strength of the outer cylinder of the wind boost rotor are directly related to the energy-saving benefits and safety performance of the wind boost rotor system. Therefore, this paper carries out the structural stress characteristic analysis and strength checking for the composite outer barrel structure of the wind boost rotor, and carries out the multi-objective optimization analysis based on the analysis results, and the results show that: the strength of the composite outer barrel meets the specification requirements, and the barrel and the reinforcement bars are subjected to the maximum stress; compared with the results before the optimization, the quality of the optimized composite outer barrel reduces by 12.33%, and the maximum stress reduces by 21.85%, which significantly reduces the quality of the outer barrel, and reduces the weight of the outer barrel. Compared with the results before optimization, the mass of the optimized composite outer cylinder is reduced by 16.78%, and the maximum stress is reduced by 21.85%, which significantly reduces the mass and improves the strength of the outer cylinder, and provides guiding suggestions for the design of the outer cylinder of the wind-powered booster rotor.
2025,47(12): 164-169 收稿日期:2024-8-14
DOI:10.3404/j.issn.1672-7649.2025.12.029
分类号:U664.3
基金项目:深海技术科学太湖实验室连云港中心自主科研项目(T4022)
作者简介:张宇阳(1998-),男,硕士,助理工程师,研究方向为船舶节能装置设计与优化
参考文献:
[1] 许婉莹, 李仁科, 饶广龙, 等. 船舶节能减排技术应用现状与展望[J]. 船舶工程, 2024, 46(4): 26-41.
XU W Y, LI R K, RAO G L, et al. Development and application of energy conservation and emission reduction technologies for ships[J]. Ship Engineering, 2024, 46(4): 26-41.
[2] 于弘平, 刘希洋, 胡世良, 等. 风力助推技术的发展现状[J]. 船舶工程, 2023, 45(3): 32-37.
[3] 陈少峰, 高丽瑾, 恽秋琴, 等. 基于百吨级自航模的试验平台建设及应用[J]. 舰船科学技术, 2018, 40(13): 36-41.
CHEN S F, GAO L J, HUI Q Q, et al. Construction and application of the experimental platform for hundred tons level self-propelled ship model [J]. Ship Science and Technology, 2018, 40(13): 36-41
[4] 王艳霞, 刘希洋, 徐杰, 等. 船用风力助推转子设计与实船应用研究[C]//第三十一届全国水动力学研讨会论文集(下册), 中国船舶科学研究中心, 2020.
[5] 操秀英. 旋筒风帆助大型船舶驶向绿色低碳[N]. 科技日报, 2024-01-30(5).
[6] 于柏枫. 风帆助推装置在船舶能源节约中的应用[J]. 船舶物资与市场, 2024, 32(1): 106-108.
[7] 贾思庆, 刘奇星, 邓建华, 等. 大型复合材料翼型风帆的应用及关键技术[J]. 材料开发与应用, 2022, 37(1): 92-97.
JIA S Q, LIU Q X, DENG J H, et al. Application and key technology of large composite airfoil sail[J]. Development and Application of Materials, 2022, 37(1): 92-97.
[8] 朱子旭, 朱锡, 李永清, 等. 复合材料夹芯结构研究现状及其在船舶工程的应用[J]. 舰船科学技术, 2018, 40(3): 1-7.
ZHU Z X, ZHU X, LI Y Q, et al. Present researches about sandwich composite structures and its applies in ship industry[J]. Ship Science and Technology, 2018, 40(3): 1-7.
[9] 李健, 洪术华, 沈金平. 复合材料在海洋船舶中的应用[J]. 机电设备, 2019, 36(4): 57-59.
LI J, HONG S H, SHEN J P. Applications of composite materials on marine ships[J]. Mechanical and Electrical Equipment, 2019, 36(4): 57-59.
[10] DEB K, AGRAWAL S, PRATAB A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//Proceedings of the Parallel Problem Solving from Nature VI, 2000.
[11] SRINIVAS N, DEB K. Multiobjective function optimization using nondominated sorting genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 1301-1308.