本文针对传统稳定平台技术路线存在的不足,提出直接驱动电机+高精度谐波减速器的多自由度稳定平台设计方案。方案围绕主机控制与方位、俯仰、横滚三轴系展开,硬件上采用高精度谐波减速器,软件采用位置环+速度环+电流环的复合控制架构。Matlab仿真测试模拟低空无人机低速运动,平台接收位置信息后动态跟踪并击毁目标,实测利用六自由度运动平台模拟舰艇运动,测量激光束指向偏差。结果表明,该平台在不同振动等级工况下均具有较高指向精度,能满足舰载激光武器指向精度要求,有效克服了传统平台在响应速度、精度保持、环境适应性等方面的局限,为舰载激光武器实战化应用提供可靠技术支撑。
This paper proposes a multi-degree-of-freedom stable platform design scheme of direct drive motor + high-precision harmonic reducer in view of the deficiencies existing in the traditional stable platform technology route. The scheme is centered around the main control and the three axis systems of azimuth, pitch and roll. In terms of hardware, high-precision harmonic reducers are adopted, and in software, a composite control architecture of position loop + speed loop + current loop is used. The Matlab simulation test simulates the low-speed movement of low-altitude unmanned aerial vehicles. After receiving the position information, the platform dynamically tracks and destroys the target. In the actual measurement, the six-degree-of-freedom motion platform is used to simulate the movement of the warship and measure the pointing deviation of the laser beam. The results show that the platform has high pointing accuracy under different vibration level working conditions, can meet the pointing accuracy requirements of shipborne laser weapons, effectively overcome the limitations of traditional platforms in terms of response speed, accuracy maintenance, environmental adaptability, etc., and provide reliable technical support for the practical application of shipborne laser weapons.
2025,47(12): 170-174 收稿日期:2024-9-7
DOI:10.3404/j.issn.1672-7649.2025.12.030
分类号:U667.65
基金项目:2023年山西省高等学校科技创新计划项目(2023L441)
作者简介:曹丽丽(1986-),女,硕士,讲师,研究方向为光学工程与光机电一体化、物理教学及图像处理
参考文献:
[1] 孙碧原, 邰源政, 谷琼婵, 等. 基于自适应自抗扰的惯性稳定平台控制系统研究[J]. 组合机床与自动化加工技术, 2025, 13(1): 129-134.
SUN B Y, TAI Y Z, GU Q C, et al. Research on the control system of inertial stabilized platform based on adaptive active disturbance rejection control[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2025, 13(1): 129-134.
[2] 徐粲然, 孙世岩, 佘博, 等. 万瓦级舰载激光武器反无人机作战效力研究[J]. 兵器装备工程学报, 2021, 42(12): 129-134.
XU C R, SUN S Y, SHE B, et al. Research on the combat effectiveness of megawatt-class shipborne laser weapons against unmanned aerial vehicles[J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 129-134.
[3] 徐东翔. 舰载激光武器毁伤能力的建模与仿真[J]. 系统仿真技术, 2021, 17(2): 94-97.
XU D X. Modeling and simulation of the damage capability of shipborne laser weapons[J]. System Simulation Technology, 2021, 17(2): 94-97.
[4] 王柏雄, 宗思光, 张鑫. 舰载激光武器打击无人机蜂群毁伤特性研究[J]. 激光与红外, 2024, 54(2): 256-261.
WANG B X, ZONG S G, ZHANG X. Research on the damage characteristics of shipborne laser weapons striking swarms of unmanned aerial vehicles[J]. Laser & Infrared, 2024, 54(2): 256-261.
[5] 徐粲然, 孙世岩, 佘博. 舰载激光武器反导体系贡献率评估方法研究[J]. 火力与指挥控制, 2023, 48(1): 110-115+120.
XU C R, SUN S Y, SHE B. Research on the evaluation method of the contribution rate of shipborne laser weapons to the anti-missile system[J]. Fire Control & Command Control, 2023, 48(1): 110-115+120.
[6] 王成飞, 吴鹏飞, 彭聪. 基于模板匹配的舰载激光武器打击目标毁伤点确定方法[J]. 舰船电子工程, 2022, 42(1): 48-52+140.
WANG C F, WU P F, PENG C. Method for determining the damage points of targets struck by shipborne laser weapons based on template matching[J]. Ship Electronic Engineering, 2022, 42(1): 48-52+140.
[7] 刘瑞东, 唐文勇, 刘俊, 等. 基于三维结构设计与分析软件平台的舰船结构性能快速评估[J]. 舰船科学技术, 2009, 31(5): 9-14.
LIU R D, TANG W Y, LIU J, et al. Rapid evaluation of ship structural performance based on three-dimensional structural design and analysis software platform[J]. Ship Science and Technology, 2009, 31(5): 9-14.
[8] 冯建鑫, 朱振凯, 龚柏春, 等. 基于改进浣熊优化算法的光电稳定平台改进自抗扰控制[J]. 红外与激光工程, 2025, 54(3): 247-256.
FENG J X, ZHU Z K, GONG B C, et al. Improved active disturbance rejection control of optoelectronic stabilized platform based on improved raccoon optimization algorithm[J]. Infrared and Laser Engineering, 2025, 54(3): 247-256.