无人舰船舱室布置需求不同于有人舰船,为搜索设计空间得到较优的全船舱室划分方案,提出无人舰船舱室智能划分方法。首先,分析舱室布置需求对舱室布置过程的影响,总结舰船舱室布置属性;其次,建立横舱壁位置寻优、设备舱室分配、液体舱室分配、单一大规模液体舱室分配的无人舰船舱室划分数学模型;然后,基于遗传算法求解无人舰船舱室划分问题;最后,通过仿真算例验证该方法的收敛性与有效性。结果显示,多次仿真结果总目标函数值均能够收敛至稳定值,并计算相对标准偏差为6.5%;通过定量比较算法计算结果参数与设计目标参数,可认为该方法能够输出可行设计方案。在仿真算例中,无人舰船舱室智能划分方法能够提供满足设计需求的舱室划分方案,该方法可为工程中无人舰船舱室划分提供一种新的设计思路。
Unmanned ship compartment arrangement needs are different from manned ships, in order to search the design space to get a better ship-wide compartment division scheme, an intelligent division method of unmanned ship compartments is proposed. Firstly, analyze the influence of cabin arrangement demand on the process of cabin arrangement, and summarize the attributes of cabin arrangement of ships. Secondly, establish a Mathematical modeling of the unmanned ship compartmentalization problem with transverse bulkhead position finding, equipment compartment assignment, liquid compartment assignment, and single large-scale liquid compartment assignment. Then solve the unmanned ship compartment distribution problem by genetic algorithm. Lastly, validate the method convergence and validity through the simulation examples. The results show that the total objective function value can converge to a stable value in several simulation results, and the relative standard deviation is calculated to be 6.5%. By quantitatively comparing the parameters calculated by the algorithm with the design objective parameters, it can be considered that the method is able to output feasible design solutions. In the simulation example, the intelligent distribution method of unmanned ship compartments can give the compartment distribution scheme to meet the design requirements, and the method can provide a new design idea for the design of unmanned ship compartment division in engineering.
2025,47(14): 6-14 收稿日期:2024-10-30
DOI:10.3404/j.issn.1672-7649.2025.14.002
分类号:U662.3
基金项目:国家自然科学基金资助项目(52071215);国防基础科研计划资助项目(JCKY2023206A023)
作者简介:龚文波(2000-),男,硕士研究生,研究方向为计算机辅助船舶设计制造
参考文献:
[1] TEPPER N A. Exploring the use of model-based systems engineering (MBSE) to develop systems architectures in naval ship design[D]. Massachusetts Institute of Technology, 2010.
[2] LEE K Y, HAN S N, ROH M I. An improved genetic algorithm for facility layout problems having inner structure walls and passages[J]. Computers & Operations Research, 2003, 30(1): 117-138.
[3] PARSONS M G, CHUNG H, NICK E, et al. Intelligent ship arrangements: a new approach to general arrangement[J]. Naval Engineers Journal, 2008, 120(3): 51-65.
[4] NICK E, PARSONS M G, NEHRLING B. Fuzzy optimal allocation of spaces to zone-decks in general arrangements[C]//Proceedings of the 9th International Marine Design Conference. Ann Arbor, MI. 2006.
[5] DANIELS A, PARSONS M G. An agent based approach to space allocation in general arrangements[C]//Proceedings of the 9th IMDC, Ann Arbor, MI, 2006.
[6] DANIELS A S, PARSONS M G. A hybrid agent—genetic algorithm approach to general arrangements[J]. Ship Technology Research, 2008, 55(2): 78-86.
[7] 李俊华, 陈宾康, 应文烨, 等. 船舶舱室布置方案的模糊综合评价[J]. 中国造船, 2000, 41(4): 24-29.
[8] 胡玉龙, 黄胜, 侯远杭, 等. 舰船舱室分布的多目标优化设计模型研究[J]. 华中科技大学学报, 2011, 39(12): 41-45.
[9] 王宇, 黄胜, 廖全蜜, 等. 基于引力搜索算法的多层甲板舱室分布设计方法[J]. 中国舰船研究, 2016, 11(3): 11-16+60.
[10] ZHANG H, YU Y, ZHANG Q, et al. A bidirectional collaborative method based on an improved artificial fish swarm algorithm for ship pipe and equipment layout design[J]. Ocean Engineering, 2024, 296: 117045.
[11] LIN Y, BIAN X, DONG Z. A discrete hybrid algorithm based on differential evolution and cuckoo search for optimizing the layout of ship pipe route[J]. Ocean Engineering, 2022, 261: 112164.
[12] LEE K Y, HAN S N, ROH M I. Optimal compartment layout design for a naval ship using an improved genetic algorithm[J]. Marine technology and SNAME news, 2002, 39(03): 159-169.
[13] WANG Y, GU Y, ZHANG X, et al. Research on the intelligent layout method of ship multi-deck cabins based on improved SLP and GMBOA[J]. Ocean Engineering, 2024, 295: 116873.
[14] LEE K Y, ROH M I, JEONG H S. An improved genetic algorithm for multi-floor facility layout problems having inner structure walls and passages[J]. Computers & Operations Research, 2005, 32(4): 879-899.
[15] 王文全, 黄胜, 胡玉龙, 等. 舰船通道布局优化模型及其粒子群算法[J]. 武汉理工大学学报, 2012, 34(9): 52-56.
[16] WANG Y, WU Z, GUAN G, et al. Research on intelligent design method of ship multi-deck compartment layout based on improved taboo search genetic algorithm[J]. Ocean Engineering, 2021, 225: 108823.
[17] SU S, ZHENG Y, XU J, et al. Cabin placement layout optimisation based on systematic layout planning and genetic algorithm[J]. Polish Maritime Research, 2020, 27(1): 162-172.
[18] LOUVROS P, BOULOUGOURIS E, CORADDU A, et al. Multi-objective optimisation as an early design tool for smart ship internal arrangement[J]. Ships and Offshore Structures, 2022, 17(6): 1392-1402.
[19] 郭鹏, 冯玖. 数据库技术在船舶破舱稳定性计算中的应用[J]. 舰船科学技术, 2024, 46(5): 167-170.
GUO P, FENG J. Application of database technology in the calculation of ship damaged stability[J]. Ship Science and Technology, 2024, 46(5): 167-170.
[20] 马琳, 杨振娟. 船舶快速分舱设计的计算机辅助设计[J]. 舰船科学技术, 2021, 43(12): 16-18.
MA L, YANG Z J. Research on computer aided design of ship's quick subdivision design[J]. Ship Science and Technology, 2021, 43(12): 16-18.
[21] 王志刚, 周旭. 基于遗传算法的VLCC货油舱分舱优化[J]. 舰船科学技术, 2021, 43(7): 56-59.
WANG Z G, ZHOU X. Subdivision optimization of VLCC Cargo tanks based on genetic algorithm[J]. Ship Science and Technology, 2021, 43(7): 56-59.