以某型船舶的暴露于海水,直接承受着海流及波浪的水动力的液压传动设备的向心关节轴承这一关键部件为研究对象,对其承受不同径向载荷时的最大接触应力,接触区域半径及接触应力分布规律进行公式推导,建立完整和非完整球面的协调接触模型;采用Abaqus软件分析受不同径向载荷时轴承的接触特性,解析和仿真结果高度吻合表明了协调接触模型的合理性。结果表明,接触应力与载荷呈线性正相关,与接触区域半径呈非线性关系,与解析公式对应;内外圈游隙控制在≤0.05 mm范围内,此时接触区域较大,接触应力较小,向心关节轴承承受能力更强;外圈半宽超过内圈半径的2/3时,最大接触应力趋于极限值,保证外圈半宽是内圈半径的2/3时,能够有效消除外圈轴向宽度的限制并保证倾斜时的强度。
Taking the radial spherical bearing of the hydraulic transmission equipment exposed to seawater and directly bearing the hydrodynamic force of ocean currents and waves as the research object, the maximum contact stress, the radius of the contact area and the distribution law of the contact stress when subjected to different radial loads are derived, and the coordinated contact model of complete and incomplete spherical surfaces is established. ABAQUS software was used to analyze the contact characteristics of bearings under different radial loads, and the analytical and simulation results were in good agreement with each other, indicating the rationality of the coordinated contact model. The results show that the contact stress is linearly positively correlated with the load, and has a nonlinear relationship with the radius of the contact area, which corresponds to the analytical formula. The clearance of the inner and outer rings is controlled within the range of ≤0.05 mm, the contact area is larger, the contact stress is smaller, and the bearing capacity of the radial joint bearing is stronger; when the half-width of the outer ring exceeds 2/3 of the radius of the inner ring, the maximum contact stress tends to the limit value, so when the half-width of the outer ring is 2/3 of the radius of the inner ring, the limitation of the axial width of the outer ring can be effectively eliminated and the strength of the inclined ring can be guaranteed.
2025,47(14): 15-21 收稿日期:2024-12-6
DOI:10.3404/j.issn.1672-7649.2025.14.003
分类号:TH133.3
作者简介:冯士伦(1976-),男,副教授,研究方向为海洋工程
参考文献:
[1] 魏立保, 陈有光. 自润滑关节轴承的研制与应用[J]. 轴承, 2008, 5: 8-10.
WEI L B, CHEN Y G. Development and application of self-lubricating joint bearing[J]. Bearing, 2008, 5: 8-10.
[2] 吕中华. 基于赫兹理论的齿轮副接触应力特性分析[J]. 兰州工业学院学报, 2023, 30(3): 5-8.
LV Z H. Analysis of contact stress characteristics of gear pair based on Hertz theory[J]. Journal of Lanzhou Institute of Technology, 2023, 30(3): 5-8.
[3] 薛亚红. 椭球面关节轴承力学分析与精密制造技术研究[D]. 秦皇岛: 燕山大学, 2018.
[4] FANG X, ZHANG C H. A new universal approximate model for conformal contact and non-conformal contact of spherical surfaces[J]. Acta Mechanica, 2015, 226: 1657-1672.
[5] 方鑫. 关节轴承协调接触模型与磨损寿命预测[D]. 长沙: 国防科技大学, 2017.
[6] 李英, 李宝福, 李如琰. 自润滑关节轴承接触应力分析[J]. 轴承, 2016, 5: 32-36.
LI Y, LI B F, LI R Y. Contact stress analysis of self-lubricating joint bearing[J]. Bearing, 2016, 5: 32-36.
[7] 卢建军. 自润滑向心关节轴承失效机理及寿命评估方法研究[D]. 西安: 西北工业大学, 2017.