国际海洋贸易的不断发展,对海上运输时效提出了新的要求,船舶的运营航速亟待提高。然而,高速航行下的船舶承受更大的波浪载荷,为保证船舶安全,在船体结构强度设计时要充分考虑船体航速提升带来的波浪载荷的影响。本文以某一集装箱船为研究对象,采用自研的海洋结构分析通用软件SAM,计算船舶在不同航速下的运动和载荷响应。通过与模型试验结果对比,验证了计算软件的准确性。在此基础上,分析不同横剖面位置垂向弯矩载荷随浪向和航速变化的规律。研究成果可为船舶结构强度设计方案的制定提供参考,保证船体结构安全。
The continuous development of international maritime trade requires for the new limitation of marine transportation, the ship speed needs to be improved urgently. However, ships with higher speed will encounter greater wave loads. In order to ensure the safety of ships, the influence of wave loads caused by the increase of ship speed should be fully considered in the hull structure strength design stage. This paper takes the container ship as the research object., the motion and load response at different speeds are calculated by using the self-developed marine structure analysis. general software SAM. The accuracy of the software is verified by comparing with the model test results. On this basis, the cross section vertical bending moment load is analyzed with wave direction and speed The research results can provide a reference for the formulation of the structural strength design scheme of the ship and ensure the safety of the hull structure.
2025,47(14): 22-27 收稿日期:2024-10-16
DOI:10.3404/j.issn.1672-7649.2025.14.004
分类号:U661
基金项目:国家重点研发计划资助项目(2022YFB3306200);国家自然科学基金青年基金项目(52401346);江苏省青年基金项目(BK20230183)
作者简介:魏子阳(1994-),男,硕士,工程师,研究方向为海洋工程结构水动力性能评估。
参考文献:
[1] BISHOP R E D, PRICE W G. Hydroelasticity of Ships[M]. Cambridge University Press, London, 1979.
[2] WU Y S. Hydroelasticity of floating bodies[D]. Brunel University, U. K. , 1984.
[3] 杜双兴. 海洋浮体结构的直接分析方法–三维线性水弹性随机分析理论及应用[D]. 无锡: 中国船舶科学研究中心, 1990.
[4] 田超. 航行船舶的非线性水弹性理论与应用研究[D]. 上海: 上海交通大学, 2007.
[5] 王大云. 三维船舶水弹性力学的时域分析方法[D]. 无锡: 中国船舶科学研究中心, 1996.
[6] 倪歆韵, 王墨伟, 田超. 基于三维水弹性理论的COMPASS-THAFTS软件开发及应用[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议文集, 2019.
[7] NI X Y, CHENG X M, LU Y, et al. Evaluation of hydroelastic responses of a 180k DWT large bulk carrier[J]. Ocean Engineering, 2020, 199: 106948.
[8] 倪歆韵, 丁军, 陈颖, 等. 双模块浮式平台运动性能分析[C]// 第三十二届全国水动力学研讨会论文集, 2021.
[9] DING J, TIAN C, WU Y S, et al. Hydroelastic analysis and model tests of a single module VLFS deployed near islands and reefs[J]. Ocean Engineering, 2017, 144: 224-234.
[10] DING J, WU Y S, ZHOU Y, et al. Investigation of connector loads of a 3-module VLFS using experimental and numerical methods[J]. Ocean Engineering, 2020, 195: 106684.
[11] DING J, XIE Z Y, WU Y S, et al. Numerical and experimental investigation on hydroelastic responses of an 8-module VLFS near a typical island[J]. Ocean Engineering, 2020, 214: 107841.
[12] NI X Y, ZHANG Z W, TIAN C, et al. The development of 3d hydroelastic software and its application on platform[C]// Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, June 9-14, 2019, Glasgow, Scotland, OMAE2019-96122.
[13] NI X Y, CHENG X M, WU B, et al. Performance analysis of the mooring system of a two-module scientific research and demonstration platform[J]. Journal of Hydrodynamics, 2021, 33(5): 901-914.
[14] DING J, WU Y S, NI X Y, et al. A direct coupling analysis method and its application to the scientific research and demonstration platform[J]. Journal of Hydrodynamics, 2021, 33(1): 13-23.
[15] BERNARD M著. 海洋工程水动力学[M]. 北京: 国防工业出版社, 2012.
[16] 方钟圣. 西北太平洋波浪统计集[M]. 北京: 国防工业出版社, 1996.