水下航行器的桅杆导流罩是造成航行器附体阻力的重要部分,采用CFD软件STAR-CCM+和Ansys-AQWA对桅杆导流罩的阻力进行数值计算并进行缩比模型试验,模拟不同航速、攻角及海况等参数下A、B剖面的桅杆导流罩受力情况。先对模型尺度的桅杆导流罩进行数值计算以及试验;再对实尺度下的桅杆导流罩进行数值计算以及模型试验预报,确认预报结果的精确性;最后对2种典型工况H1、H2进行阻力和力矩的预报分析。研究结果表明,在实尺度下A剖面受到的总阻力及阻力矩在2种工况下均大于B剖面;在2种工况下,桅杆导流罩受到的阻力大小较为接近,三级海况下H2工况阻力矩更大,五级海况下则H1工况阻力力矩更大。
The mast fairing of underwater vehicles is an important part that causes the attachment resistance of the vehicle. CFD software STAR-CCM+ and Ansys-AQWA were used for numerical calculations, and scaled model tests were also conducted to simulate the stress situation of the mast fairing on profiles A and B under different sailing speeds, attack angles, and sea conditions. Firstly, numerical calculations and experiments were conducted on the model scale mast fairing. Then, numerical calculations and model experiments were conducted on the actual scale mast fairing to confirm the accuracy of the prediction results. Finally, resistance and moment were predicted and analyzed for two typical working conditions H1 and H2. The research results indicate that at the real scale, the total resistance and moment acting on profile A are higher than those acting on profile B under both operating conditions; In the two working conditions, the resistance of the mast fairing is relatively similar. The resistance moment of H2 working condition is higher under the third level sea condition, and the resistance moment of H1 working condition is higher under the fifth level sea condition.
2025,47(14): 28-34 收稿日期:2024-11-11
DOI:10.3404/j.issn.1672-7649.2025.14.005
分类号:U667.1
基金项目:国家自然科学科学基金面上项目(12472243,12072126);上海交通大学海洋工程国家重点实验开放基金(GKZD010087);华中科技大学“交叉研究支持计划”(2024JCYJ027)
作者简介:陈星廷(1999-),男,硕士研究生,研究方向为船舶流体力学
参考文献:
[1] 张楠, 沈泓萃, 姚惠之. 水下航行器阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 2: 1-13.
[2] 李鹏, 王超, 孙华伟, 等. 潜艇阻力及流场数值仿真策略优化分析[J]. 上海交通大学学报, 2022, 56(4): 506-515.
[3] 卢博, 黄桥高, 何幸, 等. 带附体潜艇流场精细化模拟与时空演化特性[J/OL]. 华中科技大学学报(自然科学版), 1-6, 2024-12-03.
[4] 柏铁朝, 许建, 王国栋, 等. 近冰面航行潜艇阻力及绕流场分析[J]. 中国舰船研究, 2021, 16(2): 36-48.
[5] VON KARMAN T. Uber den mechanismus des flussigkeits-und luftwiderstandes[J]. Phys. Z. , 1912: 49-59.
[6] PARNAUDEAU P, CARLIER J, HEITZ D. Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900[J]. Physics of Fluids, 2009, 20(8): 85-101.
[7] 延嘉虹, 杨春. 不同雷诺数下圆柱绕流流动特性数值模拟[J]. 流体测量与控制, 2024, 5(4): 1-5.
[8] 余睿洁, 罗良, 陈威, 等. 亚临界雷诺数下粗糙圆柱绕流数值模拟研究[J]. 应用力学学报, 2022, 39(5): 974-980.
[9] YEON S M, YANG J, STERN F. Large-eddy simulation of the flow past a circular cylinder at sub-to super-critical reynolds numbers[J]. Applied Ocean Research, 2016, 59: 663-675.