声学幻象斗篷是指通过特定的声波调控的机制产生一个能够自由设计且具备迷惑对手的声学幻象,是声波调控领域的重要应用成果之一。本文基于反射声波路径调控机理,设计了一种全包覆的声学幻象斗篷,用于水下声隐身领域。首先建立声学幻象斗篷的理论分析与仿真模型,揭示声学幻象斗篷工作的基本原理,验证声学幻象斗篷能使包覆下的物体拟态为平面基片的声学幻象现象,分析影响声学幻象斗篷性能的影响因素。结果表明,设计的声学幻象斗篷模型可以通过控制结构参数的变化来自由控制声学幻象斗篷覆盖的空间,能够应用于包裹水中放置的大型器件,而不会造成整个系统尺寸的明显增加。该声学结构能够在中心频率附近实现宽角度范围的声学幻象现象,为水下声隐身斗篷设计提供了一种全新的设计思路。
Acoustic illusion cloak refers to the generation of a freely designed acoustic illusion that can confuse the opponent through a specific acoustic regulation mechanism. It is one of the important application achievements in the field of acoustic regulation. Based on the path regulation mechanism of reflected acoustic waves, a fully covered acoustic phantom cloak is designed for underwater acoustic stealth. First established the theory analysis and simulation model of acoustic cloak illusion, reveals the basic principle of acoustic cloak illusion, verify the acoustic cloak illusion can make the cladding of the mimicry of an object as planar substrate acoustic illusion phenomenon, analyzes the influence factors of property of acoustic cloak illusion. Numerical simulation results show that the acoustic phantom cloak model can be applied to large devices placed in water by controlling the change of structural parameters from the space covered by the acoustic phantom cloak, without causing a significant increase in the size of the whole system. The acoustic structure can realize the acoustic illusion phenomenon in a wide angle range near the center frequency, which provides a new design idea for the design of underwater acoustic invisibility cloak.
2025,47(14): 55-60 收稿日期:2024-10-30
DOI:10.3404/j.issn.1672-7649.2025.14.009
分类号:TN911.7
基金项目:国家自然科学基金资助项目(92252205)
作者简介:刘凯(1996-),男,硕士,工程师,研究方向为水下降噪超材料
参考文献:
[1] CHEN D, ZHU X, WEI Q, et al. Asymmetric phase modulation of acoustic waves through unidirectional metasurfaces[J]. Applied Physics A, 2018, 124(1): 1-6.
[2] GAO D B, LIU X J, et al. Characteristics and applications of acoustic metasurfaces with subwavelength apertures[J]. Journal of Physics D Applied Physics A Europhysics Journal, 2017, 50(40): 405108.
[3] JU F, TIAN Y, CHENG Y, et al. Asymmetric acoustic transmission with a lossy gradient-index metasurface[J]. Applied Physics Letters, 2018, 113(12): 121901.
[4] GUO J, ZHANG X, FANG Y, et al. Reflected wave manipulation by inhomogeneous impedance via varying-depth acoustic liners[J]. Journal of Applied Physics, 2018, 123(17): 174902.
[5] ZHU X F, WU D J, LAU S K, et al. High-efficiency anomalous reflection of acoustic waves with a passive-lossless metasurface[J]. Applied Physics Express, 2019, 12(4): 047003.
[6] LIU R, JI C, MOCK J J, et al. Broadband Ground-Plane Cloak [J]. 2009 , 323(5912): 366-369
[7] BASIRI Z, FAKHERI M H, ABDOLALI A, et al. Non-closed acoustic cloaking devices enabled by sequential-step linear coordinate transformations[J]. Scientific Reperts, 2021, 11(1): 1845.
[8] 隋玉梅. 基于相位调控的声学超表面隐身斗篷研究[D]. 吉首: 吉首大学, 2023.
[9] LI Y, LIANG B, GU Z M, et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces[J]. Scientific Reports, 2013, 3(1): 2546.
[10] XIE B, TANG K, CHENG H, et al. Coding acoustic metasurfaces[J]. Advanced Materials, 2017, 29(6): 1603507.
[11] ZHOU H T, FAN S W, XIAO S L, et al. Tunable arc-shaped acoustic me-tasurface carpet cloak[J]. Smart Materials and Structures, 2020, 29(6): 065016.
[12] LIU X, ZENG X, GAO D, et al. Experimental realization for abnormal reflection caused by an acoustic metasurface with subwavelength apertures[J]. Journal of Physics D: Applied Physics, 2017, 50(12): 125303.
[13] MEI J, WU Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface[J]. New Journal of Physics, 2014, 16(12): 123007.
[14] WANG W, XIE Y, POPA B I, CUMMER S A. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface[J]. Journal of Applied Physics, 2016, 120(19): 195103.
[15] 赵翔. 声学超表面的声波调控特性及隔声应用研究[D]. 长沙: 国防科技大学, 2017
[16] CHEN D C, ZHU X F, WEI Q, et al. Asymmetric phase modulation of acoustic waves through unidirectional metasurfaces[J]. Applied Physics, A. Materials Science & Processing, 2018, 124(1) 13: 1-6.
[17] ZHU Y F, ZOU X Y, LIANG B, et al. Acoustic one-way open tunnel by using metasurface[J]. Applied Physical Letters, 2015, 107(11): 113501.
[18] LI Y, ASSOUAR B. Acoustic perfect absorber based on metasurface with deep sub-wavelength thickness (Conference Presentation)[J]. Health Monitoring of Structural and Biological System 2016, 2016: 9805.
[19] RYOO H, JEON W. An acoustic metasurface for perfect absorption: Optimal design and experimental validation[J]. Applied Physics Letters, 2018, 109(4): 044102.
[20] ZHAI S L, et al. Ultrathin cloaks with metasurfaces for audible sound[J]. Joural of Physics D Applied Physics, 2016, 49(22): 225302
[21] WANG X P, WAN L L, CHEN T N, et al. Broadband unidirectional acoustic cloak based on phase gradient metasurfaces with two flat acoustic lenses[J]. Journal of Applied Physics, 2016, 120(1): 014902.
[22] LEE M K, KIM Y Y 2016 Sci. Rep. 6 20731
[23] LI Y, SHEN C, XIE Y, et al. Tunable asymmetric transmission via lossy acoustic metasurfaces[J]. Physical Review Letters, 2017, 119(3): 035501.1-035501.5.
[24] ZHAO W, CHU H, TAO Z, et al. Acoustic transmissive cloaking using zero-index materials and metasurfaces[J]. Applied Physics Express, 2019, 12(5): 054004.
[25] BI Y, JIA H, SUN Z, et al. Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak[J]. Applied Physics Letters, 2018, 112(22): 223502
[26] ZHOU P, JIA H, BI Y, et al. Underwater carpet cloak for broadband and wide-angle acoustic camouflage based on three-component metafluid[J]. Physical Review Applied, 2022, 18(1): 014050
[27] KAN W, LIANG B, ZHU X, et al. Acoustic illusion near boundaries of arbitrary curved geometry[J]. Scientific Repports, 2013, 3: 1427