燃油系统的时滞特性会对燃气轮机的动态性能造成显著影响,集成仿真模型是复现这种复杂动态过程的有效工具,尤其是对于负荷突变的恶劣工况。基于燃气轮机与燃油系统模拟装置的结构和工作原理建立了一个多学科的燃气轮机多系统集成模型,并搭建了发电燃气轮机半物理仿真实验台,进行变工况仿真。结果表明,燃油系统的时滞特性会减弱突变负荷时燃气轮机的燃油调节能力,降低燃气轮机的稳定性,同时导致燃气轮机动力涡轮转速的瞬态调速率增大,在0.2~0.4工况的加载过程中瞬态调速率增大了44.36%,0.4~0.6工况的加载过程中增大了29.75%。
The delay characteristics of fuel system will significantly affect the dynamic performance of gas turbine, and the integrated simulation model is an effective tool to reproduce this complex dynamic process, especially for the severe load sudden change. Based on the structure and working principle of the gas turbine and fuel system simulation device, a multi-disciplinary gas turbine multi-system integration model is established, and a semi-physical simulation test platform is built to simulate the gas turbine under varying operating conditions. The results show that the time delay of the fuel system will weaken the fuel regulation ability of the gas turbine under sudden load, reduce the stability of the gas turbine, and lead to the increase of the transient adjustment rate of the gas turbine power turbine speed, which increases by 44.36% in the loading process from 0.2 to 0.4, and 29.75% in the loading process from 0.4 to 0.6.
2025,47(14): 67-73 收稿日期:2024-10-14
DOI:10.3404/j.issn.1672-7649.2025.14.011
分类号:U664.131
基金项目:基础产品创新科研项目(GT20220501)
作者简介:应世琪(2002-),男,硕士研究生,研究方向为燃气轮机总体性能仿真
参考文献:
[1] 王旭. 燃气轮机在船舶动力装置中的应用[J]. 内燃机与配件, 2018(9): 46-47.
WANG X. Application of gas turbine in ship power plant[J]. Internal Combustion Engine & Parts, 2018(9): 46-47.
[2] 王守相, 孟子涵. 舰船综合电力系统分析技术研究现状与展望[J]. 中国舰船研究, 2019, 14(2): 107-117.
WANG S X, MENG Z H. Current status and prospects of analysis technologies of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2019, 14(2): 107-117.
[3] 丁宁. 燃气轮机燃油控制系统建模仿真及故障模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[4] 秦宇. 船用燃气轮机燃油系统故障模拟及诊断研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[5] 孙建国. 现代航空动力装置控制[M]. 北京: 航空工业出版社, 2009.
[6] REED J A, AFJEH A A. Computational simulation of gas turbine: part i foundation of component based models[J]. Journal of Engineering for Gas Turbines and Power, 2000, 12(3): 10-13.
[7] ISHOLA A A , RACHEL C , TALIB A . Mathematical modeling and simulation of a twin-engine aircraft fuel system using matlab-simulink[J]. International Journal of Control Science and Engineering, 2018, 8(1): 12.
[8] 丁琳, 王道波, 李猛, 等. 直升机涡轴发动机燃油调节系统建模与仿真[J]. 航空兵器, 2011(4): 30-34.
DING L, WANG D B, LI M, et al. Modeling and simulation of fuel conditioning system for turbo-shaft engine of helicopter[J]. Aero Weaponry, 2011(4): 30-34.
[9] 张东. 发动机主燃油控制系统建模仿真与试验验证[D]. 南京: 南京航空航天大学, 2008.
[10] 刘振刚, 郭政波. 基于试飞数据的涡扇发动机主燃油系统建模研究[J]. 工程与试验, 2018, 58(3): 77-81.
LIU Z G, GUO Z G. Research on main fuel system modeling of turbofan engine based on flight test data[J]. Engineering & Test, 2018, 58(3): 77-81.
[11] ZEPENG S , HUIBING G , ZHENGUO J , et al. Modeling and optimization of fuel-mode switching and control systems for marine dual-fuel engine[J]. Journal of Marine Science and Engineering, 2022, 10(12): 2004-2004.
[12] 吴文斐, 郭迎清, 李睿, 等. 涡扇发动机液压机械主控制系统建模与仿真分析[J]. 航空发动机, 2011, 37(1): 16-19.
WU W F, GUO Y Q, LI R, et al. Modeling and simulation analysis of hydro-mechanical main control system for turbofan engine[J]. Aeroengine, 2011, 37(1): 16-19.
[13] 吴文斐, 郭迎清, 陆军. 涡扇发动机液压机械式自动加速器优化设计[J]. 航空动力学报, 2010, 25(10): 2379-2385.
WU W F, GUO Y Q, LU J. Optimal design of the turbofan engine hydro-mechanical accelerator[J]. Journal of Aerospace Power, 2010, 25(10): 2379-2385.
[14] 李淑英. 船舶动力装置仿真技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2013: 94.
[15] 关天皓. 船用发电燃气轮机精细化建模仿真及性能优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[16] 冯永保, 李锋, 何润生. 液压传动与控制[M]. 西安: 西北工业大学出版社, 2020.
[17] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5): 961-970.
CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39(5): 961-970.
[18] 胡寿松. 自动控制原理(第五版)[M]. 北京: 科学出版社, 2007.