针对舰船载3UPS-3SS并联机构存在体积大、力传递性能差等问题,对该机构进行性能分析和尺度参数多目标优化。利用矢量法构建位置反解模型和约束方程组,推导出运动学反解和速度表达式,并求得速度雅克比矩阵。结合实际工况建立运动模拟模型,得到机构物理体积表达式,并通过Matlab软件采用快速极坐标搜索法绘制其可达工作空间。基于速度雅克比矩阵,评估机构的力传递性等性能。建立尺度参数多目标优化模型,采用第三代非支配排序遗传算法(NSGA-III)对3个性能指标进行优化设计,并对优化结果进行分析,最终优化后在工作空间体积损失率仅为14.01%的情况下,物理体积减小17.58%,平均最小奇异值增大207.14%,为该机构的控制和实际应用提供理论基础。
In order to solve the problems such as large volume and poor force transmission performance of the shipborne 3UPS-3SS parallel mechanism, the performance analysis and multi-objective optimization of scale parameters were carried out on the institution. The vector method is used to construct the position inverse solution model and constraint equations, and the kinematic inverse solution and velocity expression are derived, and the velocity Jacobian matrix is obtained. Combined with the actual working conditions, the motion simulation model was established, the physical volume expression of the mechanism was obtained, and the fast polar coordinate search method was used to draw the achievable working space by Matlab software. Based on the velocity Jacobi matrix, the performance of the mechanism such as force transmission is evaluated. A multi-objective optimization model for scale parameters was established, and the third-generation Non-dominated Sorting Genetic Algorithm (NSGA-III) was used to optimize the design of the three performance indicators, and the optimization results were analyzed, and finally the physical volume decreased by 17.58% and the average minimum singular value increased by 207.14% when the volume loss rate of the working space was only 14.01%, which provided a theoretical basis for the control and practical application of the mechanism.
2025,47(14): 121-127 收稿日期:2024-8-12
DOI:10.3404/j.issn.1672-7649.2025.14.018
分类号:TH112
基金项目:国家自然科学基金资助项目(51805228);江苏省高等学校自然科学研究项目(22KJB460021,23KJA460006);常州市领军型创新人才引进培育项目(CQ20210093,CQ20220089)
作者简介:党磊(1998-),男,硕士研究生,研究方向为并联机构控制
参考文献:
[1] 刘志霖, 胡逸飞, 吴金波. 两转动一平动波浪补偿并联机构的运动学及奇异性分析[J]. 舰船科学技术, 2023, 45(1): 57-63.
LIU Z L, HU Y F, HU J B. Kinematics and singularity analysis of two rotation and one translation parallel mechanism for wave compensation[J]. Ship Science and Technology, 2023, 45(1): 57-63.
[2] 蒲志新, 潘玉奇, 郭建伟, 等. 基于PCA/PSO的3T1R并联机构性能优化[J]. 农业机械学报, 2024, 55(6): 404-413.
[3] 胡强强. 折叠分支的稳定接货并联平台关键技术研究[D]. 秦皇岛 : 燕山大学, 2018.
[4] Products: Motion compensated products [EB/OL]. (2023-09-11)[2024-3-14] Barge Master Motion Compensation Systems official website. https: //www. barge. master. com/ products/.
[5] YONG L H, QING Q, LI J L, et al. A method for the kinematic analysis of a novel wave compensation bed for ships based on the 8PSS-UP parallel platform[J]. Ocean Engineering, 2023, 288(Part 2) : 116120.
[6] 强红宾, 杜亮亮, 康绍鹏, 等. 具有解析解的1T2R重载并联稳定平台运动学及动力学建模[J/OL]. 兵工学报, 1–10 [2024-08-08].
[7] 张伟中, 李金平, 叶敏, 等. 2-PUR-PSR并联机构尺度综合多目标优化[J]. 农业机械学报, 2020, 51(11): 403-410.
[8] 彭斯洋, 程志红, 车林仙, 等. 基于UPS-RPU-PU并联机构的液压支架试验台多目标优化[J]. 中南大学学报(自然科学版), 2023, 54(7): 2683-2694.
[9] 毕晓君, 王朝. 一种基于参考点约束支配的NSGA-Ⅲ算法[J]. 控制与决策, 2019, 34(2): 369-376.
[10] 李兴瑞, 龙有强, 姜峰. 新型3-DOF 1T2R并联机构的运动学分析与尺度优化[J/OL]. 机电工程, 1–11 [2024-08-10].
[11] QIANG H B, JIN S, FENG X Y, et al. Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction[J]. IEEE Access, 2020, 8: 181880-181892.
[12] 张莹, 丁宁. 基于虚拟现实技术的船舶装配工艺仿真优化[J]. 舰船科学技术, 2024, 46(7): 171-174.
ZHANG Y, DING N. Simulation and optimization of ship assembly process based on virtual reality technology[J]. Ship Science and Technology, 2024, 46(7): 171-174.
[13] YANG Z G, SHAO M L, SHIN D I. Kinematic optimization of parallel manipulators with a desired workspace[J]. Applied Mechanics & Materials, 2015: 752–753, 973–979.
[14] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
[15] 胡开业, 刘源. 水面舰船总体方案设计多目标综合评估方法[J]. 舰船科学技术, 2021, 43(1): 17-22.
HU K Y, LIU Y. Research on the multi-objective synthesis assessment methodology for the general schemes design of navy vessels[J]. Ship Science and Technology, 2021, 43(1): 17-22.