为了研究船用悬架系统的动力学行为,明确支撑形式对减振效率的影响规律。本文基于机械运动微分方程,采用ADAMS动力学仿真软件,对液压及弹簧等不同支撑形式的悬架系统进行动力学计算,研究其在各影响因素下的运动响应和减振效率。发现不同支撑形式对于运动和减振效率有较大影响。单液压支撑形式在支撑力为2 N时具有最佳减振效率,综合减振效率达到50%左右;弹簧+液压的悬架支撑形式仅对垂向加速度运动有正向减振效果,且减振效率在5%左右,但对升沉和纵摇运动并未有良好的抑制作用;双弹簧支撑形式可以通过调整刚度系数和阻尼系数实现最大减振,最佳弹簧属性下加速度的减振效率最大达到了64%。
In order to study the dynamic behavior of Marine suspension system and clarify the law of influence of support forms on vibration reduction efficiency. Based on the differential equation of mechanical motion, ADAMS dynamic simulation software was used to calculate the dynamics of suspension system with different support forms, such as hydraulic pressure and spring, and study its motion response and vibration reduction efficiency under different influencing factors. It is found that different support forms have a great impact on motion and vibration reduction efficiency. Single hydraulic support form has the best vibration reduction efficiency when the support force is 2N, and the comprehensive vibration reduction efficiency is about 50%. The spring + hydraulic suspension support has positive damping effect on vertical acceleration motion only, and the damping efficiency is about 5%, but it has no good inhibiting effect on heave and pitch motion. The double spring support form can achieve the maximum damping by adjusting the stiffness coefficient and damping coefficient, and the maximum damping efficiency of the acceleration under the optimal spring properties can reach 64%.
2025,47(14): 128-135 收稿日期:2024-8-16
DOI:10.3404/j.issn.1672-7649.2025.14.019
分类号:U661
基金项目:中国南方电网有限责任公司创新项目资助(CGYKJXM20210326)
作者简介:陈奕钪(1989-),男,博士,高级工程师,研究方向为船舶与海洋工程高级装置设备研发
参考文献:
[1] 于婧睿. 高速双体船纵向减摇控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[2] 怪异“蜘蛛船”[J]. 科学之友(A版), 2009, 2: 15.
[3] JOHN F, AHMADIAN A. Multi-body dynamic simulation and analysis of wave-adaptive modular vessels[C]// Hawaii, 11th International Conference on Fast Sea Transportation, 2011.
[4] Nauti-craft. Boat models [EB/OL]. 2017.
[5] HAN JIALIN, MAEDA TERUO, KINOSHITA TAKESHI, et al. Towing test and motion analysis of a motion-controlled ship-based on an application of skyhook theory[C]// Proceedings of the 12th International Conference on the Stability of Ships and Ocean Vehicles, UK, 2015.
[6] JIALIN HAN, DAISUKE KITAZAWA, TAKESHI KINOSHITA, et al. Experimental investigation on a cabin-suspended catamaran in terms of motion reduction and wave energy harvesting by means of a semi-active motion control system[J]. Applied Ocean Research, 2019, 8(3): 88-102.
[7] 王默, 度红望, 熊伟. 小型救助船舶主动式液压互联悬架系统的设计与仿真[J]. 液压与气动, 2021, 45(8): 138-144.
[8] 白雪松. 波浪适应救助船悬架系统动力学特性研究[D]. 大连: 大连海事大学, 2021.
[9] 彭婧, 李旭涛, 李胜利. 基于ADAMS的液压支架运动学仿真分析[J]. 煤炭技术, 2023, 42(8): 237-239.
[10] 刘成武, 陈智强. 基于ADAMS的汽车悬架系统仿真分析与优化[J]. 福建工程学院学报, 2012, 10(3): 241-244.
[11] 霍雷刚. 电动汽车悬架系统仿真分析与优化设计[D]. 济南: 齐鲁工业大学, 2020.
[12] 陈华, 韩霄翰. 基于ADAMS光学检测 平台刚–柔耦合动力学模型仿真[J]. 机械设计与研究, 2023, 39(2): 166-170.
[13] 殷赵民, 滕汉东. 双层液压式动力反共振隔振器动力学研究[J]. 振动与冲击, 2024, 43(12): 307-311.
[14] 夏明悦. 基于变弹性基础Winkler模型的转向机构间隙球铰动力学特性研究[D]. 镇江: 江苏大学, 2022.
[15] 马啸天. 基于ADAMS的铁路起重机伸缩臂负载伸缩动力学仿真[D]. 南昌: 华东交通大学, 2023.
[16] 葛正浩, 高创, 张晓亮, 等. 基于ADAMS的Stewart平台运动学分析[J]. 轻工机械, 2024, 42(2): 1-7+22.
[17] 陈远龙, 司晓东, 温信宇. 基于ADAMS的清污机主臂液压缸杆件结构运动学分析[J]. 机械工程与自动化, 2023(1): 84-86.