为了实现舰船用泵的高精度自动化性能测试,本文将泵测试技术与可编程控制器相结合,开发一款集数据采集、数据分析、数据处理、Excel报表生成、阀门自动控制等功能为一体的舰船用泵性能测试系统,具备电机空载试验、外特性试验、汽蚀试验、数据处理分析与存储功能。通过将模糊理论与PID控制技术相结合,实现了全自动性能测试,解决了传统PID调节流量时稳定时间长、稳定误差大的问题。经过试验验证,测试系统的各项测试精度满足均1级标准,同时具有交互性能好、自动化程度高等特点。
In order to achieve high-precision automated performance testing for marine pumps, this paper combines pump testing technology with programmable controllers to develop a marine pump performance testing system. The system encompasses a range of functionalities, including data acquisition, analysis, processing, Excel report generation, and automatic valve control. It supports motor no-load tests, external characteristics tests, cavitation tests, as well as data processing, analysis, and storage capabilities. By integrating fuzzy logic with PID control, the system achieves fully automated testing and resolves issues of long stabilization times and large steady-state errors that occur with traditional PID flow regulation. Experimental results confirm that the system meets Class 1 accuracy standards and demonstrates strong interactivity and high automation.
2025,47(14): 142-147 收稿日期:2024-10-24
DOI:10.3404/j.issn.1672-7649.2025.14.021
分类号:U664.5+8;TP311.5
基金项目:国家自然科学基金资助项目(52279087,51879122);江苏省自然科学基金资助项目(BK20241801);泰州市重大科技成果转化项目(SCG202205)
作者简介:张宇航(2000-),男,硕士研究生,研究方向为泵测试系统开发与故障诊断
参考文献:
[1] 陈燕飞. 大型船用泵电气故障自动检测系统设计[J]. 舰船科学技术, 2020, 42(18): 118-120.
CHEN Y F. Design of an automatic detection system for electrical faults in large marine pumps[J]. Ship Science and Technology, 2020, 42(18): 118-120.
[2] 曹爱红. 水泵综合参数自动测试系统的研究[D]. 兰州: 兰州理工大学, 2006.
[3] 朱业瑶. 水泵性能测试系统开发及旋涡泵空化状态识别研究[D]. 武汉: 华中科技大学, 2022.
[4] RAMAMOORTHY C, SELLADURAI V, RANGANATHAN R. Experimental cost reduction in pump manufacturing industries through software based mechatronics system[C]//International Conference on Modeling Optimization and Computing, 2013.
[5] 董亮, 吴侃, 刘厚林, 等. 基于LabVIEW的泵性能测试系统设计与开发[J]. 流体机械, 2018, 46(11): 49-56.
[6] 袁源, 王佳怡, 周睿, 等. 基于LabVIEW的离心泵性能测试系统[J]. 机电技术, 2022(1): 10-12.
[7] 卢军民, 王琳, 王蕊. 基于LabVIEW的水泵测试系统设计[J]. 机床与液压, 2016, 44(16): 149-151.
[8] 马栋棋. PLC在电泵快速测试系统中的应用[J]. 流体机械, 2011, 39(11): 54-57+53.
[9] 杨帅, 姜新阔, 吴大转, 等. 离心泵通用自动化测试控制技术[J]. 排灌机械工程学报, 2014, 32(3): 191-195+207.
[10] 吴春波, 陈伟, 赵振华, 等. 基于PyQt的SHPB试验数据处理程序开发[J]. 计算机应用与软件, 2021, 38(12): 11-13+80.
[11] GB/T 3216-2016. 回转动力泵水力性能验收试验1级、2级和3级[S]. 2016.
[12] YUQIN W, HAODONG Z, ZHIBO H, et al. Optimization design of centrifugal pump flow control system based on adaptive control[J]. Processes, 2021, 9(9): 1538-1538.
[13] 高淑瑜, 季松涛, 朱健军. 三相异步电动机的空载试验[J]. 计量与测试技术, 2015, 42(12): 46-47+49.
[14] GB/T 1032-2023. 三相异步电动机试验方法[S]. 2023.
[15] 常志东. 神经网络优化PID的舰船关键设备智能控制方法[J]. 舰船科学技术, 2022, 44(21): 168-171.
CHANG Z D. Intelligent control method for key ship equipment based on neural network optimized PID[J]. Ship Science and Technology, 2022, 44(21): 168-171.
[16] 胡锦晖, 胡大斌, 肖剑波. 基于模糊理论的水下航行器运动控制及仿真研究[J]. 舰船科学技术, 2017, 39(23): 59-63.
HU J H, HU D B, XIAO J B. Research on motion control and simulation of underwater vehicles based on fuzzy theory[J]. Ship Science and Technology, 2017, 39(23): 59-63.
[17] 高彤, 王贵君. 基于模糊相似度的广义Mamdani模糊系统及其逼近[J]. 模糊系统与数学, 2018, 32(1): 137-143.
[18] 骆晓玲, 王子含. 基于模糊PID的水下航行器运动控制研究[J]. 电子测量技术, 2020, 43(19): 53-56.
[19] 魏雄杰. 基于模糊PID的灌注机流量控制研究[D]. 武汉: 湖北工业大学, 2018.
[20] PRIYANKA E , MAHESWARI C , THANGAVEL S . Online monitoring and control of flow rate in oil pipelines transportation system by using PLC based Fuzzy‐PID controller[J]. Flow Measurement and Instrumentation, 2018, 62: 144-151.