针对船桨子系统变系数、非线性特性导致的航速控制难题,本文提出一种基于自适应神经网络的舰船航速自动控制方法,旨在提升航速控制精度。首先,分析螺旋桨推力、阻力与航速的关系;其次,采用自适应循环神经网络,设计一阶严格反馈控制系统,依据航速跟踪误差确定控制率,并根据航行环境和船舶状态动态调整控制参数,实现航速精确控制。实验结果表明,该方法能够精准控制舰船航速,使航行轨迹最大化接近期望轨迹,航迹角偏移接近于0,验证了其在航速控制中的高精度和稳定性。
This study proposes a ship speed automatic control method based on adaptive neural network to address the challenges of speed control caused by the variable coefficients and nonlinear characteristics of the ship propeller subsystem, aiming to improve the accuracy of speed control. Firstly, analyze the relationship between propeller thrust, drag, and speed; Secondly, an adaptive recurrent neural network is used to design a first-order strict feedback control system. The control rate is determined based on the speed tracking error, and the control parameters are dynamically adjusted according to the navigation environment and ship status to achieve precise speed control. The experimental results show that this method can accurately control the ship's speed, maximize the navigation trajectory to approach the expected trajectory, and achieve a trajectory angle offset close to 0, verifying its high accuracy and stability in speed control.
2025,47(14): 155-158 收稿日期:2024-9-14
DOI:10.3404/j.issn.1672-7649.2025.14.023
分类号:U664.7
作者简介:王珂(1990-),女,硕士,讲师,研究方向为大数据与网络安全
参考文献:
[1] 严忠伟, 赵建森, 吴欣雨, 等. 多船会遇场景下基于循环神经网络的船舶航速预测[J]. 上海海事大学学报, 2024, 45(2): 1-6.
YAN Z W, ZHAO J S, WU X Y, et al. Ship speed prediction based on recurrent neural network in multi-ship encounter scenarios[J]. Journal of Shanghai Maritime University, 2024, 45(2): 1-6.
[2] 陈洁, 曾励. 船舶动力推进轴系纵向低频振动精准控制仿真[J]. 计算机仿真, 2024, 41(10): 296-300.
CHEN J, ZENG L. Simulation of accurate control of longitudinal low frequency vibration of ship power propulsion shafting[J]. Computer Simulation, 2024, 41(10): 296-300.
[3] 黄立文, 刘进来, 贺益雄, 等. 狭窄弯曲航段自动航迹控制方法研究[J]. 武汉理工大学学报, 2023, 45(4): 53-62.
HUANG L W, LIU J L, HE Y X, et al. Study on automatic track control in narrow curved section[J]. Journal of Wuhan University of Technology, 2023, 45(4): 53-62.
[4] 王傲威, 刘明俊, 张磊, 等. 弯曲河段船舶下行控制航速计算方法探讨[J]. 武汉理工大学学报, 2023, 45(2): 44-49.
WANG A W, LIU M J, ZHANG L, et al. Discussion on the computing method of downriver ship’s control speed in curved river[J]. Journal of Wuhan University of Technology, 2023, 45(2): 44-49.
[5] 闫昭琨, 杨冠宇, 王鸿东. 基于超螺旋滑模观测的变质量无人艇航速自适应控制[J]. 中国舰船研究, 2025, 20(1): 247-262.
YAN Z K, YANG G Y, WANG H D. Adaptive surge control of variable-mass unmanned surface vehicle based on super-twisting sliding mode observation[J]. Chinese Journal of Ship Research, 2025, 20(1): 247-262.
[6] 冯倩菲, 王玉平. 考虑排放限制与航次成本的航速优化问题[J]. 中国航海, 2023, 46(2): 82-89.
FENG Q F, WANG Y P. Ship speed optimization for minimum sulfur dioxide emissions and fuel costs[J]. Navigation of China, 2023, 46(2): 82-89.
[7] 蒋通, 崔良中, 刘立国, 等. 基于聚类分析和Att-Bi-LSTM的舰船航迹预测方法[J]. 计算机仿真, 2022, 39(8): 1-5+322.
JIANG T, CUI L Z, LIU L G, et al. The method of ship track prediction based on cluster analysis and Att-Bi-LSTM[J]. Computer Simulation, 2022, 39(8): 1-5+322.
[8] 张大恒, 张英俊, 张闯. 基于BP神经网络的船舶气象航线决策系统[J]. 中国舰船研究, 2022, 17(4): 98-106.
ZHANG D H, ZHANG Y J, ZHANG C . Meteorological shipping route decision-making system based on BP neural network[J]. Chinese Journal of Ship Research, 2022, 17(4): 98-106.
[9] 郭霆, 黄忠政, 李瑞民, 等. 考虑排放控制区的多目标船舶航速优化研究[J]. 舰船科学技术, 2024, 46(17): 20-26.
GUO T, HUANG Z Z, LI R M, et al. Research on muli-objective ship speed optimization considering ship emission control areas[J]. Ship Science and Technology, 2024, 46(17): 20-26.