随着舰船电力系统复杂度提升,大型舰船舱室输电线路需在复杂电磁环境、紧凑空间与高可靠性要求下实现优化布局,传统人工设计方法已难以满足需求。分析了舰船电力系统负荷特性、舱室空间限制及输电线路的功能需求,确定不同舱室设计侧重点。采用激光雷达与多类型传感器采集舱室空间信息和电力参数,通过边缘计算与云端协同完成数据处理与传输。设计遗传算法、粒子群算法及二者融合的遗传-粒子群混合算法,对输电线路布局进行优化并进行仿真,结果显示遗传-粒子群混合算法在缩短线路长度、降低功率损耗上显著优于人工布局与单一算法,为舰船舱室输电线路智能化布局提供有效方案。
With the increasing complexity of ship power systems, the optimization of transmission line layout in large ship cabins is required to be achieved under complex electromagnetic environments, compact spaces, and high reliability requirements, which makes traditional manual design methods difficult to meet the needs. The load characteristics of ship power systems, cabin space constraints, and functional requirements of transmission lines are analyzed to determine the design priorities for different cabins. Laser radar and multiple types of sensors are employed to collect cabin spatial information and power parameters, and data processing and transmission are completed through the collaboration of edge computing and cloud computing. Genetic algorithm, particle swarm optimization, and a hybrid genetic-particle swarm optimization algorithm are designed to optimize the transmission line layout and conduct simulations. The results show that the hybrid genetic-particle swarm optimization algorithm significantly outperforms manual layout and single algorithms in shortening line length and reducing power loss, providing an effective solution for the intelligent layout of transmission lines in ship cabins.
2025,47(14): 177-180 收稿日期:2025-5-12
DOI:10.3404/j.issn.1672-7649.2025.14.028
分类号:U667.65
作者简介:廖娟(1990-),女,讲师,研究方向为AI虚拟现实设计、平台设计及环境设计
参考文献:
[1] 孔鸿雁. 基于数字化电力工程容量及线路布局设计方法研究[J]. 电力设备管理, 2025(5): 251-253.
KONG H Y. Research on capacity and line layout design method based on digital power engineering[J]. Power Equipment Management, 2025(5): 251-253.
[2] 袁媛. 自适应遗传算法在船舶线路布局中的应用研究[J]. 舰船科学技术, 2016, 38(10): 85-87.
YUAN Y. Application research of adaptive genetic algorithm in ship line layout[J]. Ship Science and Technology, 2016, 38(10): 85-87.
[3] 刘浏, 伍玉宙. 耦合因素特征提取下船舶舱室通风设计方法[J]. 舰船科学技术, 2024, 46(19): 147-150.
LIU L, WU Y Z. Ventilation design method for ship compartments based on coupling factor feature extraction[J]. Ship Science and Technology, 2024, 46(19): 147-150.
[4] 苏勇瑞. 主船体分舱与机舱设备布局设计方法研究[D]. 大连:大连海事大学, 2024.
[5] 严波, 蔡佳倩, 郑镇华, 等. 基于AHP-FCA的新能源游船休闲舱室布局评价研究[J]. 机电产品开发与创新, 2024, 37(3): 136-140.
YAN B, CAI J Q, ZHENG Z H, et al. Research on layout evaluation of leisure cabins of new energy cruise ships based on AHP-FCA[J]. Development and Innovation of Mechanical and Electrical Products, 2024, 37(3): 136-140.
[6] 马林, 陈登凯, 施红旗, 等. 基于多种群遗传算法的舰艇生活舱室布局优化设计方法研究[J]. 西北工业大学学报, 2025, 43(1): 189-199.
MA L, CHEN D K, SHI H Q, et al. Research on Layout Optimization Design Method of Warship Living Cabins Based on Multi-Population Genetic Algorithm[J]. Journal of Northwestern Polytechnical University, 2025, 43(1): 189-199.
[7] 黄锐. 基于人工智能技术的船舶机舱设备布局系统的设计[J]. 自动化应用, 2023, 64(17): 4-6.
HUANG R. Design of marine engine room equipment layout system based on artificial intelligence technology[J]. Automation Application, 2023, 64(17): 4-6.