为精准呈现复杂的船体结构和曲面形状,提升船舶造型设计的合理性,研究基于数字化技术的大型船舶造型设计方法。通过数字化技术中非均匀B样条方法,重建大型母型船舶的曲面,建立大型母型船舶三维数字化模型,精准呈现复杂的船体结构和曲面形状;在数字化技术的Visual Basic操作线型库内,导入三维数字化模型,通过棱形系数调整法与迁移法,调整母型船舶的棱形系数与浮心纵向位置,得到初步的大型船舶造型设计结果;利用高斯定理,计算初步设计大型船舶的静水力参数,调整初步设计结果,确保大型船舶满足静水力要求,得到精细的大型船舶造型设计结果。实验证明该方法可有效重建大型母型船舶的曲面,建立三维数字化模型;该方法可有效完成大型船舶造型设计,并满足静水力要求。
In order to accurately present the complex hull structure and curved surface shape and improve the rationality of ship styling design, the styling design method of large ships based on digital technology is studied. Through the non-uniform B-spline method in digital technology, the surface of the large master ship is reconstructed, and a three-dimensional digital model of the large master ship is established to accurately present the complex hull structure and surface shape. In the Visual Basic operation line library of digital technology, the three-dimensional digital model is imported. Through the rhombus coefficient adjustment method and the transfer method, the rhombus coefficient and the longitudinal position of the floating center of the master ship are adjusted to obtain the preliminary design results of the large ship's modeling. By using Gauss's theorem, calculate the hydrostatic parameters of the large ships in the preliminary design, adjust the preliminary design results, ensure that the large ships meet the hydrostatic requirements, and obtain the fine modeling design results of the large ships. Experiments prove that this method can effectively reconstruct the surface of large master ships and establish three-dimensional digital models. This method can effectively complete the styling design of large ships and meet the hydrostatic requirements.
2025,47(14): 185-189 收稿日期:2025-6-16
DOI:10.3404/j.issn.1672-7649.2025.14.030
分类号:U662.2
作者简介:李季(1984-)女,硕士,副教授,研究方向为工业设计
参考文献:
[1] 何帅康, 陈晓东, 崔洪宇, 等. 基于实船测量的船舶结构冰激振动特性研究[J]. 振动与冲击, 2023, 42(20): 319-326.
HE S K, CHEN X D, CUI H Y, et al. A study on ice induced vibration of a ship structure based on full scale measurement[J]. Journal of Vibration and Shock, 2023, 42(20): 319-326.
[2] 李俊, 李怀进, 汪振华, 等. 海洋牧场组合式无人监测船设计与试验[J]. 上海海洋大学学报, 2023, 32(5): 1048-1058.
LI J, LI H J, WANG Z H, et al. Design and test of marine ranching combination-type unmanned monitoring vessel[J]. Journal of Shanghai Ocean University, 2023, 32(5): 1048-1058.
[3] 谭钱, 蔡薇, 王乐诚, 等. 渐递进邮轮造型与功能布局逆向设计方法[J]. 船舶工程, 2024, 46(8): 8-17.
TAN Q, CAI W, WANG L C, et al. Progressive cruise shape and functional layout reverse design methods[J]. Ship Engineering, 2024, 46(8): 8-17.
[4] 汪俊泽, 张攀, 刘均, 等. 基于子模型分解的船舶舱段结构代理模型协同优化方法[J]. 中国舰船研究, 2024, 19(2): 98-106.
WANG J Z, ZHANG P, LIU J, et al. Collaborative optimization method of surrogate model for ship cabin structure based on sub-model decomposition[J]. Chinese Journal of Ship Research, 2024, 19(2): 98-106.
[5] 肖龙辉, 裴志勇, 徐文君, 等. 船体结构数字孪生技术及应用[J]. 船舶力学, 2023, 27(4): 573-582.
XIAO L H, PEI Z Y, XU W J, et al. Digital twin technology and its application in ship structural field[J]. Journal of Ship Mechanics, 2023, 27(4): 573-582.
[6] 陆萍. 基于数字孪生技术的船体结构设计研究[J]. 舰船科学技术, 2023, 45(14): 41-44.
LU P. Research on ship structure design based on digital twin technology[J]. Ship Science and Technology, 2023, 45(14): 41-44.
[7] 马雪泉, 张立, 蒋曙晖, 等. 62 000 DWT多用途船的船型优化[J]. 船海工程, 2023, 52(6): 90-93.
MA X Q, ZHANG L, JIANG S H, et al. Hull Form Optimization for a 62 000 DWT Multi-purpose Vessel[J]. Ship & Ocean Engineering, 2023, 52(6): 90-93.