由于传统破冰船破冰的局限性,利用水下爆炸进行破冰,对舰船在两级航道运营与冰下物探等起着重要作用。层冰与海洋结构物作用时冰载荷较大,为深入探究水下爆炸载荷作用下层冰的破坏特性,本文采用耦合欧拉-拉格朗日算法(CEL)模拟自由液面作用的水下爆炸气泡演化与层冰毁伤过程,与实验结果相互验证,并对不同的爆距、药量和冰厚进行系列计算,分析层冰在水下爆炸冲击波和气泡作用下的毁坏特性。研究发现,爆距选择是决定冰层裂纹形式和产生时间的关键因素,本文水下爆炸破冰最优无量纲爆距约为0.821~1.299;装药量直接决定爆炸能量,是实现爆炸破冰的关键;水下爆炸产生气泡,并伴生水下冲击波,是造成冰层毁伤的重要因素。因此,为确保有效破冰,实现冰层多模态毁伤,需实现装药量和爆距的最佳耦合作用方式。
Due to the limitations of traditional icebreakers, the use of underwater explosions for icebreaking plays an important role in the operation of ships in two-level waterways and subglacial geophysical prospecting. In order to further explore the failure characteristics of layer ice under underwater explosion loads, this paper uses coupled Euler-Lagrangian algorithm (CEL) to simulate the evolution of underwater explosion bubbles and the damage process of layer ice under the action of free liquid surface, and verifies with the experimental results, and performs a series of calculations on different explosion distances, dosages and ice thicknesses to analyze the destruction characteristics of layer ice under the action of underwater explosion shock waves and bubbles. It is found that the selection of detonation distance is the key factor that determines the form and generation time of ice cracks, and the optimal dimensionless detonation distance of underwater explosion icebreaking is about 0.821 to 1.299, the charge directly determines the explosion energy, which is the key to realize the explosion and icebreaking, and the underwater explosion produces bubbles and is accompanied by underwater shock waves, which is an important factor causing ice damage. Therefore, in order to ensure effective ice breaking and realize multi-modal destruction of ice, it is necessary to realize the optimal coupling mode of charge and detonation distance.
2025,47(15): 12-17 收稿日期:2024-10-16
DOI:10.3404/j.issn.1672-7649.2025.15.003
分类号:U674.21;O382+.1
基金项目:国家自然科学基金资助项目(52401383)
作者简介:张健(1977-),男,博士,教授,研究方向为极地冰区船舶结构设计与加强方案
参考文献:
[1] 郭文琦. 近场水下爆炸气泡与多形状浮冰相互作用实验研究[D]. 威海: 山东交通学院, 2024.
[2] 王思强. 碎冰和层冰下航行体出水破冰动力学特性试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[3] 王莹, 秦业志, 王志凯, 等. 不同类型炸药水下爆炸时冰层损伤特性研究[J]. 振动与冲击, 2022, 41(9): 189-198.
[4] 曲艳东, 刘万里, 翟诚, 等. 水下爆破破冰爆炸冲击波传播规律数值分析[J]. 爆破, 2017, 34(2): 100-104.
[5] PU C, MAN A Z, SHI PING W, et al. Ice breaking by a collapsing bubble[J]. Journal of Fluid Mechanics, 2018, 841(3): 287-309.
[6] YING W , XIONG L Y , YE Z Q. Investigation on influence factors about damage characteristics of ice sheet subjected to explosion loads: Underwater explosion and air contact explosion[J]. Ocean Engineering, 2022, 260.
[7] 张忠和, 梁向前, 徐溦, 等. 装药位置对爆破破冰效果影响的数值分析[J]. 爆破, 2015, 32(4): 118-122+127.
[8] 吴瑞波, 郝明盛, 武彩岗, 等. 水中爆破破冰参数的优化实验[J]. 工程爆破, 2014, 20(6): 25-28.
[9] SIMULIA D. Abaqus version 2016 documentation[Z]. USA: Dassault Systems Simulia Corp, 2012.
[10] 孙成. 近场水下爆炸载荷作用下结构防护数值模拟研究[D]. 哈尔滨: 哈尔滨理工大学, 2023.
[11] ANGHILERI M , CASTELLETTI L M L , INVERNIZZI F, et al. A survey of numerical models for hail impact analysis using explicit finite element codes[J]. International Journal of Impact Engineering, 2005, 31(8): 929-944.
[12] ZAMANKHAN P. Simulations of collision of ice particles[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 15(6): 1538-1552.
[13] WANG Y , QIN Y , YAO X. A combined experimental and numerical investigation on damage characteristics of ice sheet subjected to underwater explosion load[J]. Applied Ocean Research, 2020, 103(4): 102347.
[14] 阚兴玉. 水中高压气泡与弹/脆性边界流固耦合特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.