深海潜器的核心部件之一是耐压壳,其结构的安全性至关重要。针对耐压壳的主尺度(半径、长度、板厚等)与结构响应之间一直没有比较简单且准确的经验公式,但其在深海潜器的结构设计中具有重要作用,提出预测在给定外压下球柱结合耐压壳强度的数学表征公式。首先,根据耐压壳的几何结构确定设计参数,利用拉丁超立方技术设计1000组耐压壳结构型式;其次,基于Python对Abaqus的二次开发进行参数化建模与结果批量后处理;最后,根据耐压壳结构应力极值位置,分析推导出母型公式,基于机器学习进行回归预测。与有限元计算结果相比,运用机器学习得出耐压壳的主尺度与结构的强度响应之间数学表征,平均预测误差为2.53%。因此,耐压壳的主尺度与结构的强度响应之间存在简易的数学表达,研究成果可为深海潜器的结构设计提供一定参考。
The pressure hull is a critical component of deep-sea submersibles, and its structural safety is of paramount importance. However, a simple yet accurate empirical formula describing the relationship between the main dimensions of the pressure hull (e.g., radius, length, and plate thickness) and its structural response remains unavailable, despite its critical role in structural design. This study develops a mathematical representation for predicting the strength of spherical-cylindrical pressure hulls under given external pressure. First, the design parameters were identified based on the geometric structure of the pressure hull, and 1,000 structural configurations were generated using the Latin hypercube sampling technique. Second, Python was utilized to perform secondary development of Abaqus for parametric modeling and batch post-processing. Finally, the mathematical formula was derived by analyzing stress extremities and further refined using machine learning-based regression prediction. Compared to finite element results, the proposed approach achieves an average prediction error of 2.53%. This study confirms the existence of a straightforward mathematical relationship between the main dimensions of the pressure hull and its strength response, offering practical guidance for the structural design of deep-sea submersibles.
2025,47(15): 44-50 收稿日期:2024-10-28
DOI:10.3404/j.issn.1672-7649.2025.15.008
分类号:U661.43;U663.1
基金项目:中核集团领创科研项目
作者简介:张峥林(1999-),男,硕士,研究方向为深潜器尺度极限数学表征及结构智能优化设计
参考文献:
[1] 刘涛. 大深度潜水器结构分析与设计研究[D]. 无锡: 中国船舶科学研究中心, 2001.
[2] 岳坤. 深海潜器开口结构界面变形协调的研究[D]. 无锡: 江南大学, 2011.
[3] 周新院, 张卫星, 葛付婷. 深潜器柱形耐压壳结构研究现状概述[J]. 电子质量, 2021(12): 6-9.
ZHOU X Y, ZHANG W X, GE F T. Overview of research status of cylindrical pressure shell structure of deep submersible[J]. Electronics Quality, 2021(12): 6-9.
[4] 张颖, 赖长亮, 和卫平, 等. 潜水器耐压壳结构选材应用综述[J]. 舰船科学技术, 2022, 44(5): 1-6.
ZHANG Y, LAI C L, HE W P, et al. Review of materials selection and application of submersible pressure hull structure[J]. Ship Science and Technology, 2022, 44(5): 1-6.
[5] 罗珊, 王纬波. 潜水器耐压壳结构研究现状及展望[J]. 舰船科学技术, 2019, 41(19): 7-16.
LUO S, WANG W B. Status and prospects on the pressure shell structure of submersible[J]. Ship Science and Technology, 2019, 41(19): 7-16.
[6] 戴永健. 环肋圆柱壳力学特性分析及试验研究[D]. 镇江: 江苏科技大学, 2018.
[7] 朱邦俊, 万正权. 环肋圆柱壳应力分析的一种新方法[J]. 船舶力学, 2004(4): 61-67.
ZHU B J, WANG Z Q. A method of stress analysis of ring-stiffened cylindrical shell[J]. Journal of Ship Mechanics, 2024(4): 61-67.
[8] GJB/Z21A-2001. 潜艇结构设计计算方法[S]. 北京: 国防科工委军标出版发行部出版, 2002.
[9] 曹晓明, 喻卫宁, 王磊, 等. 环向加筋夹层圆柱壳体应力计算方法[J]. 哈尔滨工程大学学报, 2023, 44(2): 181-189.
CAO X M, YU W N, WANG L, et al. Stress analysis of ring-stiffened sandwich cylindrical shells[J]. Journal of Harbin Engineering University, 2023, 44(2): 181-189.
[10] 张磊, 胡震. 大深度载人潜水器圆柱形耐压壳体可靠性研究[J]. 中国造船, 2023, 64(5): 29-38.
ZHANG L, HU Z. Research on reliability of cylindrical pressure shell of large-depth HOV[J]. Shipbuilding of China, 2023, 64(5): 29-38.
[11] 王萌, 刘峰, 田震, 等. 基于协同优化的耐压柱壳多学科多目标优化[J]. 哈尔滨工程大学学报, 2024, 45(1): 62-69.
WANG M, LIU F, TIAN Z, et al. Multidisciplinary and multiobjective optimization of pressurized cylindrical shell based on collaborative optimization[J]. Journal of Harbin Engineering University, 2024, 45(1): 62-69.
[12] 王硕, 梅志远, 付晓, 等. 无人潜器耐压壳体选型与承载特征规律研究[J/OL]. 中国舰船研究, 1-7[2024-06-01].
WANG S, MEI Z Y, FU X, et al. Pressure hull material selection and load law of unmanned underwater vehicle [J/OL]. Chinese Journal of Ship Research, 1-7[2024-06-01]
[13] 王康. 水下耐压壳的结构优化及疲劳特性分析[D]. 大连: 大连海事大学, 2023.
[14] 刘洋. 基于遗传算法的水下无人潜器结构特性优化分析[J]. 舰船科学技术, 2015, 37(9): 145-148.
LIU Y. Optimization analysis of structure of UUV based on genetic algorithm[J]. Ship Science and Technology, 2015, 37(9): 145-148.
[15] YANG M, YANG S Y, WANG Y, et al. Optimization design of neutrally buoyant hull for underwater gliders[J]. Ocean Engineering, 2020, 209: 107512.
[16] IMRAN M, SHI D, TONG L, et al. Multi-Objective Design Optimization of Composite Submerged Cylindrical Pressure Hull for Minimum Buoyancy Factor and Maximum Buckling Load Capacity[J]. Defence Technol, 2021, 17(4): 1190-1206.
[17] 曲自信, 陈爽, 欧阳斌, 等. 内外肋骨型式对耐压壳体结构应力的影响分析[J]. 电子技术, 2020, 49(10): 189-191.
QU Z X, CHEN S, OU Y B, et al. The Analysis of the Influence of Internal and External Frane Type on the Structural Stress of Pressure Hull[J]. Electronic Technology, 2020, 49(10): 189-191.
[18] 中国船级社. 潜水系统和潜水器入级规范[S]. 北京: 人民交通出版社, 2018.