重型破冰船在航行时可能遭遇极端的非设计工况,为深入研究重型破冰船冰带结构在局部冰载下的极限承载能力,基于其他工程领域的极限载荷分析方法,提出冰带结构极限承载能力的定义和极限状态的判断依据。以某重型破冰船舷侧冰带结构为例,运用2种非线性分析方法求解多组工况下的极限承载能力,探究不同结构模型化方法对计算结果的影响,建立了冰带结构极限承载能力非线性直接计算方法,并对极限承载力模型试验进行了数值模拟。与试验的对比表明,模型试验和数值模拟结果高度一致,采用准静态的非线性方法能够准确可靠地预估冰带结构的极限承载能力,提出的冰带结构极限承载能力非线性直接计算方法合理有效。研究成果能够为重型破冰船的研发和冰带结构的设计及优化提供参考。
In order to deeply study the ultimate capacity of ice strengthening structure of heavy icebreaker, a definition of ultimate capacity of ice strengthening structure and its criterion related to load-deflection curve are given based on the ultimate load analysis in other fields. Two nonlinear analytical methods are implemented to calculate the ultimate capacity of the side ice strengthening structure from a heavy icebreaker, and the influences of some modelling methods on calculation results are researched. A nonlinear direct calculation method of ultimate capacity analysis of ice strengthening structure is proposed and a verification loading test is carried out. Results show that the quasi-static explicit finite element method can be applied to reliably calculate the ultimate capacity of ice strengthening structure, and good correlation between experimental and simulation results is obtained in aspect of ultimate capacity and load-deflection curve. The established direct calculation method proves to be rational and effective. The study can offer a reference for the design and structural optimization of heavy icebreaker.
2025,47(15): 51-57 收稿日期:2024-10-28
DOI:10.3404/j.issn.1672-7649.2025.15.009
分类号:U663
作者简介:杨晓非(2000-),男,硕士研究生,研究方向为船舶与海洋工程结构物强度分析
参考文献:
[1] 吴刚, 王燕舞, 张东江. 中国极地破冰船总体与结构设计技术现状与展望[J]. 中国造船, 2020, 61(1): 194-203.
WU G, WANG Y W, ZHANG D J. Research status and prospect of general and structural design technology of polar icebreaker in China[J]. Shipbuilding of China, 2020, 61(1): 194-203.
[2] 陈香淦, 李昊, 刘俊, 等. 冰区加强结构非线性强度校核方法规范对比研究[J/OL]. 海洋工程. https://link.cnki.net/urlid/ 32.1423.P.20240823.1314.002.
[3] QI K L, LIU J, LIU S W, et al. Strength assessment of polar ships nder ice loads using direct calculation method[J]. Journal of Ship Mechanics, 2014, 18(3): 280-290.
[4] XU D, LIU J. Research on limit load criteria for polar ships under ice loads[J]. Journal of Ship Mechanics, 2014, 18(3): 124-142.
[5] 曾佳, 王燕舞, 郑文青, 等. 极区船舶冰带构件极限载荷评估[J]. 船舶工程, 2019, 41(7): 5-11.
ZENG J, WANG Y W, ZHENG W Q, et al. Limit load assessment for ice belt structure of polar ships[J]. Ship Engineering, 2019, 41(7): 5-11.
[6] SHI S, ZHU L, KARAGIOZOVA D, et al. Experimental and numerical analysis of plates quasi-statically loaded by a rectangular indenter[J]. Marine Structures, 2017, 55: 62-77.
[7] LIU B, VILLAVICENCIO R, GUEDES S C. Simplified method for quasi-static collision assessment of a damaged tanker side panel[J]. Marine Structures, 2015, 40: 267-288.
[8] 陆明万, 寿比南, 杨国义. 压力容器分析设计的塑性分析方法[J]. 压力容器, 2011, 28(1): 33-39.
LU M W, SHOU B N, YANG G Y. Plastic analysis methods for design by analysis of pressure vessels[J]. Pressure Vessels Technology, 2011, 28(1): 33-39.
[9] ASME. Boiler and Pressure Vessel Code[S]. 2007.
[10] 左安达. 基于Ansys的极限载荷分析评定方法与结果讨论[J]. 化工设备与管道, 2020, 57(3): 1-7.
ZUO A D. Discussion of evaluation method for limit load analysis by using ansys[J]. Process Equipment & Piping, 2020, 57(3): 1-7.
[11] IACS. Requirements concerning Polar Class[S]. 2019
[12] RMRS. Rules for the Classification and Construction of Sea-Going Ships[S]. 2023.
[13] ABS. Guidance Notes on Ice Class[S]. 2014.
[14] ABS. Nonlinear Finite Element Analysis of Marine and Offshore Structures[S]. 2021.
[15] 中国船级社. 材料与焊接规范[S]. 2024.