随着智能船舶技术的迅速发展,自动靠泊控制成为实现智能船舶完全自动控制的重要环节。然而,风、浪、流以及岸壁效应带来的外部干扰和系统不确定性,使自动靠泊控制变得更加复杂。基于此,本文提出一种基于二自由度回路成型的自动靠泊控制方法。首先,对船舶模型的不确定性进行分析。然后,利用二自由度回路(2DOF)成型对控制器进行设计,前馈部分用于优化闭环系统的时域响应,反馈部分提高系统的鲁棒稳定性和干扰抑制能力。最后通过仿真实验对所提方法的有效性和优越性进行验证。仿真结果表明,所提方法在复杂环境下具有较强的抗干扰能力,能够有效减少船舶首向和速度波动,提升靠泊精度,为智能船舶的自动靠泊控制提供了可靠的解决方案。
With the rapid development of intelligent ship technology, automatic berthing control is an important step to realize the fully automatic control of intelligent ships. However, external disturbances and system uncertainties introduced by wind, wave, currents, and bank effects make automatic berthing control more complicated. Based on this, an automatic berthing control method based on 2-degree-of-freedom loop shaping is proposed in this paper. Firstly, the uncertainty of the ship model is analyzed. Then, the controller is designed by using two-degree-of-freedom loop shaping, where the feedforward part is used to optimize the time domain response of the closed-loop system, and the feedback part is used to improve the robust stability and the disturbance rejection capability of the system. Finally, the effectiveness and superiority of the proposed method is verified by simulation experiments. The simulation results show that the proposed method has better disturbance rejection capability in the complex environment, can effectively reduce the heading and speed fluctuation of the ship and improve the berthing accuracy. A reliable solution is provided for the automatic berthing control of intelligent ships.
2025,47(15): 58-64 收稿日期:2024-11-1
DOI:10.3404/j.issn.1672-7649.2025.15.010
分类号:U675.91
基金项目:国家重点研发计划项目(2018YFB1601500);教育部中国高校产学研创新基金-新一代信息技术创新项目(2022IT191,2023IT209);青岛市创业创新领军人才计划(19-3-2-8-zhc);青岛科技大学研究生自主科研创新项目(B2023KY005)
作者简介:梁宇峰(1997-),男,硕士研究生,研究方向为载运装备智能化
参考文献:
[1] AHMED Y A, HASEGAWA K. Implementation of automatic ship berthing using artificial neural network for free running experiment[J]. IFAC Proceedings Volumes, 2013, 46(33): 25-30.
[2] ASLAM S, MICHAELIDES M P, HERODOTOU H. Internet of ships: A survey on architectures, emerging applications, and challenges[J]. IEEE Internet of Things Journal, 2020, 7(10): 9714-9727.
[3] 李国帅, 张显库, 张安超. 智能船舶靠泊技术研究热点与趋势[J]. 中国舰船研究, 2024, 19(1): 3-14.
LI G S, ZHANG X K, ZHANG A C. Research hotspots and tendency of intelligent ship berthing technology[J]. Chinese Journal of Ship Research, 2024, 19(1): 3-14.
[4] TAKAI K. An automatic manoeuvring system in berthing[C]//8th Ship Control Systems Symposium, 1987.
[5] 徐海祥, 朱梦飞, 余文曌, 等. 面向智能船舶的自动靠泊鲁棒自适应控制[J]. 华中科技大学学报(自然科学版), 2020, 48(3): 25-29+40.
XU M Y, ZHU M F, YU W Z. Robust adaptive control for automatic berthing of intelligent ships[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2020, 48(3): 25-29+40.
[6] 苑守正, 刘志林, 郑林熇, 等. 基于事件触发自适应时域MPC的船舶靠泊方法[J]. 控制与决策, 2024, 39(1): 336-344.
YUAN S Z, LIU Z L, ZHENG L H, et al. Ship berthing based on event-triggered adaptive horizon MPC[J]. Control and Decision, 2024, 39(1): 336-344.
[7] IM N K, NGUYEN V S. Artificial neural network controller for automatic ship berthing using head-up coordinate system[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(3): 235-249.
[8] 张毅. 基于复杂港口环境下的无人船自主靠泊最优控制方案研究[D]. 长春: 吉林大学, 2024.
[9] SHUAI Y, LI G, CHENG X, et al. An efficient neural-network based approach to automatic ship docking[J]. Ocean Engineering, 2019, 191: 106514.
[10] SHIMIZU S, NISHIHARA K, MIYAUCHI Y, et al. Automatic berthing using supervised learning and reinforcement learning[J]. Ocean Engineering, 2022, 265: 112553.
[11] YUAN S, LIU Z, SUN Y, et al. An event-triggered trajectory planning and tracking scheme for automatic berthing of unmanned surface vessel[J]. Ocean Engineering, 2023, 273: 113964.
[12] LI S, LIU J, NEGENBORN R R, et al. Automatic docking for underactuated ships based on multi-objective nonlinear model predictive control[J]. IEEE Access, 2020, 8: 70044-70057.
[13] FOSSEN T I, GODHAVN J M, BERGE S P, et al. Nonlinear control of underactuated ships with forward speed compensation[J]. IFAC Proceedings Volumes, 1998, 31(17): 119-124.
[14] ZHOU K, DOYLE J C. Essentials of robust control[M]. Upper Saddle River, NJ: Prentice hall, 1998.
[15] ALI H I, SHAREEF Z. Full state feedback H2 and h-infinity controllers design for a two wheeled inverted pendulum system[J]. Engineering and Technology Journal, 2018, 36(10A): 1110-1121.
[16] KATEBI M R, GRIMBLE M J, ZHANG Y. H∞ robust control design for dynamic ship positioning[J]. IEE Proceedings-Control Theory and Applications, 1997, 144(2): 110-120.
[17] 高守军. 岸壁效应与船舶安全操纵[J]. 天津航海, 2019(2): 24-27.
GAO S J. Wharf effect and ship safety maneuvering[J]. Tianjin Navigation, 2019(2): 24-27.
[18] HOYLE D J, HYDE R A, LIMEBEER D J N. An h/sub infinity/approach to two degree of freedom design[C]//[1991] Proceedings of the 30th IEEE Conference on Decision and Control. IEEE, 1991.
[19] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons, 2011.
[20] FENG K, WANG J, WANG X, et al. Adaptive state estimation and filtering for dynamic positioning ships under time-varying environmental disturbances[J]. Ocean Engineering, 2024, 303: 117798.
[21] 申铁龙. H无穷控制理论及应用[M]. 北京: 清华大学出版社, 1996.
[22] LIN X, LIANG K, LI H, et al. Robust finite‐time H‐infinity control with transients for dynamic positioning ship subject to input delay[J]. Mathematical Problems in Engineering, 2018, 2018(1): 2838749