为了在复杂载荷条件下实现结构刚度最大化,同时控制变形并满足轻量化要求,提出一种基于有限元分析的船型船体结构优化设计方法。首先,利用MAXSURF和HyperWorks建立船体有限元模型,采用PSHELL和PBEAM单元进行精细化网格划分,并通过湿模态分析评估船体耦合振动特性。其次,以结构刚度最大化为目标,结合人工鱼群算法对船体结构展开优化,通过觅食、聚群和追尾行为更新优化解,确保全局最优性。实验结果表明,所提方法在网格质量、极限弯矩和最大变形控制方面均优于传统方法,雅克比率稳定在0.8以上,极限弯矩显著提升,最大变形有效减少。该方法为船体结构优化设计提供了高效、可靠的解决方案,有助于推动我国造船业的技术进步和绿色发展。
In order to achieve maximum structural stiffness under complex load conditions, while controlling deformation and meeting lightweight requirements, a finite element analysis based optimization design method for ship hull structure is proposed. Firstly, a finite element model of the ship hull is established using MAXSURF and HyperWorks, and fine mesh division is performed using PSHELL and PBEAM elements. The coupled vibration characteristics of the ship hull are evaluated through wet modal analysis. Secondly, with the goal of maximizing structural stiffness, the ship structure is optimized using the artificial fish swarm algorithm. The optimization solution is updated through foraging, clustering, and rear end behavior to ensure global optimality. The experimental results show that the proposed method is superior to traditional methods in terms of grid quality, ultimate bending moment, and maximum deformation control. The Jacques ratio remains stable above 0.8, the ultimate bending moment is significantly improved, and the maximum deformation is effectively reduced. This method provides an efficient and reliable solution for optimizing the design of ship structures, which helps to promote technological progress and green development in China's shipbuilding industry.
2025,47(15): 72-76 收稿日期:2024-10-12
DOI:10.3404/j.issn.1672-7649.2025.15.012
分类号:U662.2
基金项目:中国职业技术教育学会2024年度分支机构科研课题资助项目(ZJ2024A011);江苏海事职业技术学院2023年科研资助项目(2023ZKyb03)
作者简介:宫继萍(1986-),女,博士,讲师,研究方向为邮轮内装技术。
参考文献:
[1] 王一镜, 罗广恩, 刘家奇, 等. 基于AMPSO-BP-GA的油船舱段结构优化[J]. 江苏科技大学学报(自然科学版), 2023, 37(2): 7-13.
[2] 康煜晗, 裴志勇, 吴卫国. 基于代理模型技术的江海直达船体结构可靠性优化设计[J]. 船舶力学, 2024, 28(4): 551-560.
[3] 丁健亮, 康煜晗, 张亮, 等. 复合载荷作用下船体结构优化设计[J]. 船舶工程, 2023, 45(S1): 193-197.
[4] FERREIRA GONZÁLEZ, DANIEL, LUND J , BEVAND R , et al. Optimization of ship propellers under consideration of the acoustic emission based on partitioned fluid-structure interaction simulations[J]. Journal of Ship Research, 2024, 68(3): 13.
[5] KANG Y , PEI Z , AO L W W. Reliability-based design optimization of river-sea-going ship based on agent model technology[J]. Marine Structures, 2024, 94(3): 1-19.
[6] 许博方, 鲍文倩, 王云霆, 等. 基于ABAQUS的气垫船船体护舷优化设计[J]. 中国舰船研究, 2024, 19(S2): 74-80.
[7] 冯宇雷, 李宗哲, 柳亦兵. 汽轮机转子有限元应力计算中网格划分的研究[J]. 汽轮机技术, 2023, 65(6): 406-408+450.
[8] 孙锐, 阳军生, 张庆贺, 等. 基于网格自适应加密策略的隧道稳定性三维极限分析下限有限元法研究[J]. 岩土力学, 2024, 45(4): 1256-1264.
[9] 蔡晓涛, 黄志武, 叶林昌, 等. 某全回转救助拖船船体结构振动分析[J]. 船海工程, 2024, 53(2): 72-75.
[10] 任陈鸿, 窦培林. “集散两用”船型的船体中部上层建筑振动特性分析[J]. 舰船科学技术, 2023, 45(3): 27-31.
REN C H, DOU P L. Analysis of vibration characteristics of midship superstructure of the dual-purpose ship[J]. Ship Science and Technology, 2023, 45(3): 27-31.
[11] 屈毫拓, 俞俊, 陆晔, 等. 基于黏性流体-柔性结构耦合的波浪中船舶非线性波激振动研究[J]. 中国造船, 2023, 64(5): 1-12.
[12] 徐张, 陈映彬. 某高速客船振动测试分析与控制[J]. 江苏科技大学学报(自然科学版), 2024, 38(6): 32-36+43.
[13] 凌小康, 詹杰, 麻建飞. 基于改进人工鱼群算法的防渗墙结构优化研究[J]. 水电能源科学, 2023, 41(11): 152-155.
[14] 马镜涵, 刘泓滨, 汪鑫. 基于响应面模型与人工鱼群算法的汽车车门内饰柱注塑成型优化设计[J]. 工程塑料应用, 2023, 51(3): 64-68.