针对多变海况导致海上母船的吊放载荷产生升沉运动,进而影响水下作业安全的问题。基于主动式升沉补偿控制方法,以提高主动式升沉补偿系统的控制精度与稳定性为目标,提出一种基于混合策略改进的黑翅鸢算法(Improved Black Winged kite Algorithm, IBKA)用来优化主动升沉补偿自抗扰控制系统。首先,构建主动升沉补偿系统模型并设计线性自抗扰控制器(Linear Active Disturbance Rejection Control, LADRC);然后,针对LADRC参数调优的困难性,利用IBKA实现LADRC参数自适应整定;最后,通过在不同工况下进行仿真实验,IBKA-LADRC控制器均表现出良好的升沉补偿控制效果,满足系统要求。
Addressing the issue of heave motion in the lifting load of the mother ship at sea due to changing sea conditions, which potentially compromises underwater operation safety, we propose a hybrid strategy based on the Improved Black Winged Kite Algorithm (IBKA) to optimize the Active Heave Compensation Active Disturbance Rejection Control system. This is done with the aim of enhancing the control precision and stability of the Active Heave Compensation system. Initially, we construct a model for the Active Heave Compensation system and design a Linear Active Disturbance Rejection Control (LADRC). To tackle the challenges associated with tuning LADRC parameters, we utilize IBKA for adaptive tuning of these parameters. Subsequently, simulation experiments conducted under various conditions demonstrate that the IBKA-LADRC controller exhibits effective heave compensation control, satisfying the system's requirements.
2025,47(15): 84-89 收稿日期:2024-9-5
DOI:10.3404/j.issn.1672-7649.2025.15.014
分类号:U674.38;P75
作者简介:李佑祺(2000-),男,硕士研究生,研究方向为升沉补偿控制系统
参考文献:
[1] 蔡巍, 陶春辉, 王渊, 等. 自主水下机器人海底热液区应用综述[J]. 机器人, 2023, 45(4): 483-495.
[2] 王春娟, 辛庞晨雨, 刘大海. 中国海洋工程装备国产化进程及其高质量发展趋势[J]. 中国软科学, 2024(S1): 379-387+413.
[3] 周利, 段玉响, 任政儒, 等. 主动式升沉补偿控制系统及运动预报[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 98-104.
[4] WENHUA L, CHANG X, SHANYING L, et al. Prediction and control strategy based on optimized active disturbance rejection control for AHC system[J]. Ocean Engineering, 2023, 289(P1).
[5] ZHI L, XIN M, YIBIN L, et al. ADRC-ESMPC active heave compensation control strategy for offshore cranes[J]. Ships and Offshore Structures, 2020, 15(10): 1098-1106.
[6] 刘鹏, 周利, 刘仁伟, 等. 用于船舶主动式升沉补偿的自抗扰控制方法[J]. 舰船科学技术, 2022, 44(22): 83-88.
LIU P, ZHOU L, LIU R W, et al. Research on active disturbance rejection control applied to active heave compensation control system for ship[J]. Journal of Naval Science and Technology, 2022, 44(22): 83-88.
[7] ZHIQIANG GAO. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Denver, CO, USA: IEEE, 2003: 4989-4996.
[8] WENQING C, WEN T, DONGHAI L, et al. Tuning of linear active disturbance rejection controllers based on step response curves[J]. IEEE ACCESS, 2020, 8180869-180882.
[9] HUMAIDI A J, BADR H M, HAMEED A H. PSO-Based Active Disturbance Rejection Control for Position Control of Magnetic Levitation System[C]//2018 5th International Conference on Control, Decision and Information Technologies (CoDIT). Thessaloniki, Greece, 2018.
[10] JUN W, CHUAN W W, XUE X H, et al. Black-winged kite algorithm: a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J]. Artificial Intelligence Review, 2024, 57(4): 1-53.
[11] 楼梦瑶. 基于运动预测的ROV主动升沉补偿控制系统研究[D]. 上海: 上海交通大学, 2020.
[12] 孙健忠, 刘凤春. 电机与拖动(第 2 版)[M]. 北京: 机械工业出版社, 2013.
[13] 黄鲁蒙, 张彦廷, 张磊, 等. 主动式海洋钻井升沉补偿绞车设计与仿真研究[J]. 计算机仿真, 2013, 30(11): 307-311.
[14] 朱斌. 自抗扰控制入门[M]. 北京: 北京航空航天大学出版社, 2017.
[15] TANYILDIZI E, DEMIR G, Golden sine algorithm: A novel math-inspired algorithm[J]. Advances in Electrical and Computer Engineering, 2017, 17(2): 71–78.
[16] 刘素美. 波浪数值模拟[J]. 科技与创新, 2018(13): 132-133.
LIU S M. Numerical simulation of waves[J]. Technology and Innovation, 2018(13): 132-133.