由于多源不确定性因素的影响,传统船舶推进轴系振动预测方法难以准确模拟船舶推进轴系的旋转振动特性。本文基于统计数据结合蒙特卡罗方法对螺旋桨推力和柴油机径向力的概率特性进行模拟,同时以有限元法和油层流体动力学分别确定曲轴刚度特性、推力轴承刚度和阻尼参数,并利用龙格库塔方法求解多质量离散模型轴向振动的二阶微分方程组,针对实际轴系考虑随机因子的纵向自由振动和共振特性进行了分析。研究表明:相对确定论的能量法,考虑随机因子的轴系最大振动振幅偏差可达30%;船舶轴系振动模拟中考虑随机因素的效果是存在的,随着轴线转速的增加而增加;相对确定论方法,考虑随机性曲轴前端平均振幅可以降低1.0%。
Due to the influence of multiple sources of uncertainty, traditional ship propulsion shaft systems are difficult to accurately simulate the rotational vibration characteristics of ship propulsion shaft systems. Based on statistical data combined with Monte Carlo methods, this paper simulates the probability characteristics of propeller thrust and diesel engine radial force. At the same time, finite element method and oil reservoir fluid dynamics are used to determine the elastic characteristics of the crankshaft, thrust bearing elasticity and damping parameters, respectively. The Runge Kutta method is used to solve the second-order differential equations of axial vibration in a multi mass discrete model. The longitudinal free vibration and resonance characteristics of actual shaft systems considering random factors are analyzed. Research shows that the energy method of relative determinism can achieve a vibration deviation of up to 30% for shaft systems considering random factors. The effect of considering random factors in ship shaft system vibration simulation exists, As the axis speed increases, it increases; considering randomness can reduce the amplitude by 1.0%.
2025,47(15): 102-108 收稿日期:2024-11-26
DOI:10.3404/j.issn.1672-7649.2025.15.017
分类号:U662.2
基金项目:国家重点研发计划资助项目(2020YFC1508405);中国交通教育研究会教育科学研究课题(JT2022YB101)
作者简介:闫佳兵(1985-),男,副教授,研究方向为船舶动力系统及推进技术
参考文献:
[1] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰艇研究, 2017, 12(4): 6-16.
HUA H X, YU Q. Structural and acoustic response due to excitation from ship stern:overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(4): 6-16.
[2] 杨俊, 王刚伟, 田佳彬, 等. 船舶推进轴系振动控制研究[J]. 振动与冲击, 2020, 39(10): 24-31+91.
YANG J, WANG G W, TIAN J B, et al. Study on vibration control of marine shaft[J]. Journal of Vibration and Shock, 2020, 39(10): 24-31+91.
[3] 尹红升, 刘金林, 曾凡明. 舰船弹性支撑轴系振动特性研究[J]. 海军工程大学学报, 2022, 34(1): 55-61+112.
YIN H S, LIU J L, ZENG F M. On vibration characteristics of ship shafting under elastic support[J]. Journal of Naval University of Engineering, 2022, 34(1): 55-61+112.
[4] 何江洋, 何琳, 徐景霞. 考虑轴承动刚度的船舶集成减振系统纵向传递特性研究[J]. 舰船科学技术, 2023, 45(10): 69-73.
HE J Y, HE L, XU J X. Research on longitudinal transmission characteristics of marine integrated vibration isolation system considering thrust bearing dynamic stiffness[J]. Ship Science and Technology, 2023, 45(10): 69-73.
[5] LAI G J, LEI J S, LIU L L, et at. Numerical and experimental study on comprehensive optimization for the KPIs of ship propulsion shafting design based on MDO[J]. Ocean Engineering, 2021, 222: 108624.
[6] SHANG BY, LI T Y, ZHU X, et al. Vibration Analysis of Ship Shaft System Under Time-Varying Uncertainties Based on Interval Process Model[C]//ASME 2024 43rd International Conference on Ocean, 2024.
[7] KANG W, ZHANG Z G, ZHOU K, et al. The random vibration and force transmission characteristics of the elastic propeller-shafting system induced by inflow turbulence[J]. Ocean Engineering, 2019, 188: 106317.
[8] ZHANG Z G, MA X X, YU H T, et at. Stochastic dynamics and sensitivity analysis of a multistage marine shafting system with uncertainties[J]. Ocean Engineering, 2021, 219: 108388.
[9] GAIDAI O, DOU P, NAESS A, et al. Nonlinear 6D response statistics of a rotating shaft subjected to colored noise by path integration on GPU[J]. International Journal of Non-linear Mechanics, 2019, 111: 142-148.
[10] PIETKIEWICZ, PAWEL B, SLAWOMIR, et al. The stability loss of the rotor-slide bearings system under random load variations[J]. Journal of Vibroengineering, 2017, 19(7): 4921-4935.
[11] MA X X, ZHONG Y C, CAO P, et al. Uncertainty quantification and sensitivity analysis for the self-excited vibration of a spline-shafting system[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: mechanical Engineering, 2023, 9(4): 041104.
[12] LU L X, LI G B, XING P F, et al. Numerical and experimental investigation on the whirling vibration characteristic of ship propulsion shafting under multi-source uncertainty[J]. Ocean Engineering, 2024, 309: 1-18.
[13] PANDE S S. Analysis of tapered land aerostatic thrust bearings under conditions of tilt and rotation[J]. Wear, 1985(4): 297-308.
[14] 朱孟华. 船舶内燃机[M]. 北京: 国防工业出版社, 2000.
[15] GRIGORIEV E A. International cooperation Periodic and random forces in piston engines[EB/OL]. A. International cooperation Grigoryev. M: Mechanical Engineering, 2002, 272
[16] RUAN D D. Random coefficient calculation in computation Perform torsional vibration on the shaft of a marine diesel engine using the principal coordinate method[D]. St. Petersburg: St. Petersburg State Technical University, 2004.
[17] NIKITIN V. Initial statistical processing of experimental data[C]//Samara: Samara. sir Technology, 2017.
[18] SOBOLENKO H. Generalized legal parameter dependency relationship load distribution of the main engine of a trawl fishing boat[J]. Sobolenko/Shipyard, 2001(4): 34-37.
[19] WU Z X. Analysis of properties of thrust bearing in ship propulsion system[J]. Journal of Marine Science and Upplication, 2010(9): 220-226.