针对船舶复杂航行环境产生的各类干扰,对以太网信号传输稳定性构成严重威胁的问题,设计船舶航行信息传输抗干扰系统。利用航行信息采集层的船载设备数据接口、水文传感器等采集船舶位置、航向等原始船舶航行信息。在信号调理层对所采集信息进行滤波、隔离与标准化处理,将船舶航行信息转换为以太网适配的格式。以太网传输层选取TCP/IP协议作为通信协议,利用抗干扰模块的匹配滤波器进行抗干扰处理,通过以太网交换机将信息传送至岸基处理中心。该层利用匹配滤波器使信号在干扰频率位置的功率大幅衰减,抑制信道干扰,保障船舶航行信息稳定传输。系统测试结果表明,所设计系统能够有效抑制以太网的信道干扰,接收机输出的信号波形平滑,显著提升了信号传输信噪比,保证船舶航行信息的稳定传输。
Aiming at the problem that all kinds of interference caused by the complex navigation environment of ships pose a serious threat to the stability of Ethernet signal transmission, an anti-interference system for ship navigation information transmission is designed. Utilize the onboard equipment data interface and hydrological sensors of the navigation information collection layer to collect raw ship navigation information such as ship position and heading. Filter, isolate, and standardize the collected information in the signal conditioning layer, and convert the ship navigation information into an Ethernet compatible format. The Ethernet transport layer selects TCP/IP protocol as the communication protocol, uses the matched filter of the anti-interference module for anti-interference processing, and transmits information to the shore based processing center through Ethernet switches. This layer uses a matched filter to significantly attenuate the power of the signal at the interference frequency position, suppress channel interference, and ensure stable transmission of ship navigation information. The system test results show that the designed system can effectively suppress channel interference in Ethernet, and the signal waveform output by the receiver is smooth, significantly improving the signal-to-noise ratio of signal transmission and ensuring stable transmission of ship navigation information.
2025,47(15): 173-176 收稿日期:2025-3-30
DOI:10.3404/j.issn.1672-7649.2025.15.029
分类号:U665
基金项目:山西省基础研究计划项目(202303021221014)
作者简介:刘晓勇(1983-),男,硕士,高级工程师,研究方向为计算机科学与技术、计算机网络、网络安全、数据库、系统运维、信息化建设及项目管理
参考文献:
[1] 于连杰, 王建华, 万德成. KCS船模静水航行破波噪声数值预报[J]. 中国造船, 2024, 65(3): 234-243.
YU L J, WANG J H, WAN D C. Numerical prediction of wave breaking noise for kcs ship model in still water navigation[J]. Shipbuilding of China, 2024, 65(3): 234-243.
[2] 张博文, 马国军, 王亚军. 基于边缘计算的船舶通信网络负载均衡研究[J]. 中国造船, 2024, 65(3): 122-134.
ZHANG B W, MA G J, WANG Y J. Research on load balancing of ship communication network based on edge computing[J]. Shipbuilding of China, 2024, 65(3): 122-134.
[3] 余文曌, 陈浩宇, 徐海祥, 等. 面向多源干扰的动力定位船舶精细抗干扰控制[J]. 控制与决策, 2023, 38(7): 2035-2041.
YU W Z, CHEN H Y, XU H X, et al. Elegant anti-disturbance control of dynamic positioning in the presence of multi-source disturbance[J]. Control and Decision, 2023, 38(7): 2035-2041.
[4] 魏新江, 魏永丽, 张慧凤. 船舶动力定位系统的精细抗干扰控制[J]. 控制与决策, 2022, 37(10): 2593-2599.
WEI X J, WEI Y L, ZHANG H F. Elegant anti-disturbance control for dynamic positioning system of ships[J]. Control and Decision, 2022, 37(10): 2593-2599.
[5] 刘洋, 贾宏春, 刘陆, 等. 无人船集群的抗干扰最优覆盖控制[J]. 中国舰船研究, 2023, 18(1): 67-77.
LIU Y, JIA H C, LIU L, et al. Anti-disturbance optimal coverage control of ASVs[J]. Chinese Journal of Ship Research, 2023, 18(1): 67-77.
[6] 董然, 孙创, 傅强, 等. 基于非线性干扰观测器的船舶编队控制方法[J]. 哈尔滨工程大学学报, 2022, 43(5): 697-705.
DONG R, SUN C, FU Q, et al. A ship formation control method using a nonlinear disturbance observer[J]. Journal of Harbin Engineering University, 2022, 43(5): 697-705.
[7] 孙杰, 吕文祺, 祁新杰. 船岸连接与船船连接复合通信系统设计[J]. 船舶工程, 2024, 46(S1): 399-403.
SUN J, LYU W Q, QI X J. Design of Composite Communication System for Ship-Shore Link and Ship-Ship Link[J]. Ship Engineering, 2024, 46(S1): 399-403.