本文综述基于运动平台国内外舰船操纵模拟器的发展现状,总结分析六自由度运动平台的反解、控制策略,不同模拟器洗出算法的侧重点和性能指标,舰船运动数学模型的参数化与非参数化建模等关键技术。通过对现有研究的分析,指出未来基于运动平台的舰船操纵模拟器的发展将会朝着更智能化、沉浸式方向发展,为进一步研发高逼真度舰船操纵模拟器提供有益参考。
This paper summarizes the development status of ship maneuvering simulators based on motion platform at home and abroad, summarizes and analyzes the inverse solution and control strategy of six-degree-of-freedom motion platform, the focus and performance index of different simulator washing algorithms, and the key technologies of ship motion mathematical model parametric and non-parametric modeling. Through the analysis of the existing research, it is pointed out that the future development of ship maneuvering simulator based on motion platform will be more intelligent and immersive, which provides a useful reference for the further development of high fidelity ship maneuvering simulator.
2025,47(16): 1-6 收稿日期:2024-9-2
DOI:10.3404/j.issn.1672-7649.2025.16.001
分类号:U675.9
基金项目:军队预研项目(995-0204020404)
作者简介:彭利坤(1975-),男,博士,教授,研究方向为舰船操纵及其仿真
参考文献:
[1] 盛永辉. 基于航海模拟器的BRM自动评估系统研究[D]. 厦门: 集美大学, 2017.
[2] 金一丞, 尹勇. 公约、技术与航海模拟器的发展[J]. 中国航海, 2010, 33(1): 1-6.
[3] DET NORSKE VERITAS(DNV). Standard for Certification No. 2.14 Maritime Simulator Systems October2007 [R]. Oslo: DNV Press, 2007.10.
[4] DALZELL W H, MODISETTE JE. Studies of ship roll stabilization tanks[R]. Technical Report No1, AD607765, 1964.
[5] BELL J, WALKER W P. Activated and passive controlled fulid tank system for ship stabilization[J]. SNAME Transaction, 1967, 75: 150–193.
[6] 聂锦麟. 船舶操纵模拟器的发展和应用[J]. 上海海运学院学报, 1982(3): 63-85.
[7] 夏雨. 船舶运动模拟器动力学建模与动感模拟算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[8] ABÁSOLO M J, BAUZA C G, LAZO M, et al. From a serious training simulator for ship maneuvering to an entertainment simulator[C]//In Proceedings of the International Conference on Articulated Motion and Deformable Objects, Palma de Mallorca, 2014.
[9] SUN C Q, ZHANG L J, SUN J B. The development of marine autopilot simulator[J]. Applied Mechanics & Materials, 2014, 602-605: 882-886.
[10] 严乃长, 岳麟, 邬昌汉, 等. 上海交大二自由度载人船舶运动模拟器[J]. 上海交通大学学报, 1983(2): 1-11.
[11] 魏林. 六自由度船舶运动模拟器在哈尔滨船舶工程学院问世[J]. 哈尔滨船舶工程学院学报, 1992(3): 357.
[12] 丁忠军, 高翔, 刘保华. 蛟龙号载人潜水器驾驶与操纵训练模拟系统[J]. 哈尔滨工程大学学报, 2019, 40(3): 440-448.
[13] 李航洲, 郭瑽, 苏静, 等. 基于“深海勇士”号载人潜水器的VR模拟培训系统设计与应用[J]. 船舶工程, 2022, 44(S1): 644-649.
[14] STEWART D. A platform with six degrees of freedom[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers 1847-1982(vols-196), 1965, 180: 371–386.
[15] FICHTER E F. A stewart platform- based manipulator: general theory and practical construction[J]. The International Journal of Robotics Research, 1986, 5(2): 157-182.
[16] 吴生富, 王洪波, 黄真. 并联机器人工作空间的研究[J]. 机器人, 1991(3): 33-39.
[17] 陈晨. 面向AUV水下运动模拟的六自由度试验平台研制[D]. 武汉: 华中科技大学, 2022.
[18] 朱道扬, 段少丽. 基于四元数的六自由度平台位置反解仿真模拟[J]. 系统仿真技术, 2020, 16(2): 90-93.
[19] YIYANG L, XI J, HONGFEI B, et al. A general robot inverse kinematics solution method based on improved PSO algorithm[J]. IEEE ACCESS, 2021, 9: 32341-32350.
[20] BAI Y, LUO M, PANG F. An algorithm for solving robot inverse kinematics based on FOA optimized BP neural network [J]. Applied Sciences-Basel, 2021, 11(15): 7129.
[21] ZHAO Q, WANG N, SPENCER B F, JR. Adaptive position tracking control of electro-hydraulic six-degree-of-freedom driving simulator subject to perturbation[J]. Simulation-Transactions of the Society for Modeling and Simulation International, 2015, 91(3): 265-75.
[22] 于靖伟. 六自由度运动平台控制策略研究[J]. 南方农机, 2016, 47(5): 67+71.
[23] 李捷菲. 基于BP神经网络的PID控制系统研究与设计[D]. 吉林: 吉林大学, 2019.
[24] 常光宇, 陈志峰, 郭春雨, 等. Stewart平台神经网络非奇异终端滑模控制 [J]. 智能系统学报. 2024, 19(2): 353-359.
[25] 柳颖涛. 受限运动空间下倾斜洗出运动多参数优化研究[D]. 天津: 中国民航大学, 2020.
[26] CONRAD B, SCHMIDT S F. Motion drive signals for piloted flight simulators [R]. National Aeronautics and Space Administration, 1970.
[27] PARRISH R V, DIEUDONNE J E, MARTIN JR D J. Coordinated adaptive washout for motion simulators[J]. Journal of Aircraft, 1975, 12(1): 44-50.
[28] ASADI H, MOHAMMADI A, MOHAMED S, et al. Adaptive washout algorithm based fuzzy tuning for improving human perception[C]//ICONIP , 2014.
[29] SIVAN R, ISH-SHALOM J, HUANG J K. An optimal control approach to the design of moving flight simulators[J]. IEEE Transactions on Systems, Man and Cybernetics, 1982, 12(6): 818-827.
[30] MEHMET D, GILLES R, ANDRAS K, et al. Model-based predictive motion cueing strategy for vehicle driving simulators[J]. Control Engineering Practice, 2009, 17(9): 995-1003.
[31] 飞行模拟器设计和性能的数据要求 空气动力和飞行操纵: HB 7504.3-1997[S]. 1996.
[32] 飞行模拟器设计和性能的数据要求 动力装置系统: HB 7504.6–1997[S]. 1996.
[33] 汽车驾驶培训模拟器: JT/T 378-2022[S]. 2022.
[34] 海船船员培训模拟器技术要求 第1部分: 船舶操纵模拟器: JT/T 1379.1-2021[S]. 2021.
[35] ABKOWITZ M. A. Leetures on ship hydrodynamics steering and maneuverability. Hydro-and Aerodynamics Laboratory[R]. Report No. Hy-5. Denmark. 1964.
[36] 小川宏阳, 小山健夫, 贵岛胜郎. MMG 报告-III[J]. 日本造船协会志, 1977: 358–372.
[37] 汪有良. 半潜船运动建模与仿真[D]. 武汉: 武汉理工大学, 2011.
[38] 任俊生, 杨盐生, 杜嘉立. 高速水翼双体船波浪中运动建模与仿真[J]. 大连海事大学学报, 2004(2): 4-7.
[39] 李笑晨, 尹勇, 周宏宇, 等. 正横规则波中游艇操纵运动仿真[J]. 大连海事大学学报, 2017, 43(3): 1-6.
[40] 陈刚, 王威, 霍聪. 基于高斯过程回归的船舶动力学模型辨识[J]. 舰船科学技术, 2022, 44(19): 1-5.
CHEN G, WANG W, HUO C. Ship dynamic model identification based on Gaussian process regression[J]. Ship Science and Technology, 2022, 44(19): 1-5.
[41] RASMUSSEN C E, WILLIAMS C K. Gaussian Processes for Machine Learning[M]. The MIT Press: Cambridge, MA, USA, 2006.
[42] ZHANG Z, REN J. Locally weighted non-parametric modeling of ship maneuvering motion based on sparse gaussian process [J]. Journal of Marine Science and Engineering, 2021, 9(6): 9060606.
[43] BAI W W, REN J S, LI T S. Multi-innovation gradient iterative locally weighted learning identification for a nonlinear ship maneuvering system[J]. China Ocean Engineering, 2018, 32(3): 288-300.