物体入水过程为复杂的气液固多相耦合过程。本文系统分析了物体特征、运动特性与运行环境属性所包含的不同影响因素对入水过程冲击载荷与空泡变化的影响。物体特征包含有几何特征、表面状况、密度、温度、亲/疏水性材料、刚体/弹性体等,运动特性包含有入水速度、入水角度、自身旋转特性、受扰动性与串/并联运动方式等,运行环境属性包含有气体与液体的粘度与可压缩性、液体表面张力等。通过该分析,可为装备入水过程稳定运行提供理论支持、技术指导与应用参考。
Water-entry process of the object is one complex process with multiphase coupling of gas, liquid, and solid. The article systematically analyzed effects of different factors contained in physical feature, motion peculiarity, and property of operating environment on variations of impact load and cavitation bubble. For physical feature, it included geometric characteristic, surface condition, density, temperature, hydrophilic and hydrophobic materials, and rigid and elastic bodies, etc. For motion peculiarity, it included water-entry velocity, water-entry angle, self-rotation characteristic, perturbation characteristic, and tandem and parallel motion modes, etc. For property of operating environment, it included viscosity and compressibility of gas and liquid, and liquid surface tension, etc. Via the analysis, it could provide theoretical support, technical supply, and application reference for the equipment stable operation.
2025,47(16): 7-11 收稿日期:2024-9-12
DOI:10.3404/j.issn.1672-7649.2025.16.002
分类号:O353.4
基金项目:国家自然科学基金项目(12302455,52169018);中央引导地方科技发展资金项目(23ZYQA0320);陕西省创新能力支撑计划(创新人才推进计划-陕西省青年科技新星项目,2025ZC-KJXX-91);国防科工局稳定支持项目资助;甘肃省教育厅产业支撑计划项目(2021CYZC-27);上海交通大学海洋工程国家重点实验室开放基金(2115);山东省海上航天装备技术创新中心开放课题基金(MAETIC-2022-12);恶劣环境下智能装备技术山西省重点实验室开放研究基金(202104010910020)
作者简介:韩向东(1989-),男,博士,副研究员,研究方向为跨介质力学及其机理分析。
参考文献:
[1] SAIRAM P B, RAVI K S G, DAS H N. A comprehensive review study on multiphase analysis of water entry bodies[J]. Ocean Engineering, 2024, 292: 116579.
[2] 孙玉松, 周穗华, 张晓兵. 非周期性入水冲击问题研究进展[J]. 舰船科学技术, 2020, 42(1): 6-10.
SUN Y S, ZHOU S H, ZHANG X B. Research progress on the nonperiodic water-entry impact problem[J]. Ship Science and Technology, 2020, 42(1): 6-10.
[3] HAN X D, WANG X Q, LI C, et al. Experimental investigation on effects of temperature and launch pressure on variations of the impact acceleration in cross media water-entry process[J]. Journal of Physics: Conference Series, 2024, 2762(1): 12042.
[4] LI Z P, SUN L Q, YAO X L, et al. Experimental study on cavity dynamics in high Froude number water entry for different nosed projectiles[J]. Applied Ocean Research, 2020, 102: 102305.
[5] 刘华坪, 余飞鹏, 张岳青, 等. 不同头型鱼雷入水冲击载荷研究[J]. 水下无人系统学报, 2018, 26(6): 527-532.
[6] MAY A. Effect of surface condition of a sphere on its water-entry cavity[J]. Journal of Applied Physics, 1951, 22(10): 1219-1222.
[7] KIM N, PARK H. Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions[J]. Journal of Fluid Mechanics, 2019, 863: 757-788.
[8] UEDA Y, TANAKA M, UEMURA T, et al. Water entry of a superhydrophobic low-density sphere[J]. Journal of Visualization, 2010, 13(4): 289-292.
[9] 穆青, 熊天红, 王康健, 等. 不同密度回转体高速倾斜入水空化数值模拟[J]. 兵工学报, 2020, 41(增刊1): 116-121.
[10] CHOI K, KIM N, SEON G, et al. Laser-induced control of a cavity bubble behind a sinking sphere in water entry: Dependency on the surface temperature and impact velocity[J]. Physics of Fluids, 2019, 31(12): 122105.
[11] LI J C, WEI Y J, WANG C, et al. Cavity formation during water entry of heated spheres[J]. Chinese Physics B, 2018, 27(9): 094703.
[12] TECHET A H, TRUSCOTT T T. Water entry of spinning hydrophobic and hydrophilic spheres[J]. Journal of Fluids and Structures, 2011, 27: 716-726.
[13] 孙钊, 曹伟, 王聪, 等. 半疏水-半亲水球体垂直入水空泡数值仿真研究[J]. 兵工学报, 2017, 38(5): 968-977.
[14] SUN S L, CHEN Y H, HU J, et al. Fully nonlinear investigation on water entry of a rigid paraboloid[J]. Engineering Analysis with Boundary Elements, 2020, 117: 57-65.
[15] YANG L, WEI Y J, WANG C, et al. Numerical study on the deformation behaviors of elastic spheres during water entry[J]. Journal of Fluids and Structures, 2020, 99: 103167.
[16] SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water entry impact dynamics of AUVS[J]. Journal of Fluids and Structures, 2019, 91: 1002760.
[17] ZHAO G, GUO Z T, CHEN T, et al. Experimental investigation on high-speed vertical water entry of spheres with different densities and velocities[J]. Ocean Engineering, 2024, 295: 116775.
[18] 孙士明, 刘广涛, 颜开, 等. 入水参数对航行体亚音速入水过程影响的数值研究[J]. 中国造船, 2023, 64(1): 1-12.
[19] CHE P Q, SHI Y, ZHAO H R, et al. Study on the cavity evolution and load characteristics of large projectile during high-speed water entry[J]. Ocean Engineering, 2024, 303: 117673.
[20] 钱铖铖, 余春华, 穆青, 等. 发射速度和发射角度对射弹高速入水流动的影响[J]. 兵器装备工程学报, 2019, 40(7): 35-39+50.
[21] LI C H, WANG C, WEI Y J, et al. Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities[J]. International Journal of Multiphase Flow, 2020, 129: 103339.
[22] 肖海燕, 罗松, 朱珠, 等. 高速射弹小角度入水弹道特性研究[J]. 北京理工大学学报, 2019, 39(8): 784-791.
[23] 蒋运华, 徐胜利, 周杰. 运动体小扰动下入水空泡试验研究[J]. 弹道学报, 2016, 28(1): 81-86.
[24] LU L, WANG C, LI Q, et al. Numerical investigation of water-entry characteristics of high-speed parallel projectiles[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 450-465.
[25] 黄海龙, 王聪, 余德磊, 等. 高速射弹并联入水过程空泡演化特性试验[J]. 哈尔滨工业大学学报, 2020, 52(12): 15-20.
[26] YUN H L, LYU X J, WEI Z Y. Experimental study on vertical water entry of two tandem spheres[J]. Ocean Engineering, 2020, 201: 107143.
[27] YANG F C, CHEN X P, YUE P T. The influences of "gas" viscosity on water entry of hydrophobic spheres[J]. The European Physical Journal E, 2019, 42: 34.
[28] MARSTON J O, VAKARELSKI I U, THORODDSEN S T. Bubble entrapment during sphere impact onto quiescent liquid surfaces[J]. Journal of Fluid Mechanics, 2011, 680: 660-670.
[29] AKERS B, BELMONTE A. Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 135(2-3): 97-108.
[30] 孙凯, 党建军, 郝维敏, 等. 回转体超音速入水冲击数值仿真[J]. 鱼雷技术, 2015, 23(1): 2-6.
[31] 李国良, 尤天庆, 孔德才, 等. 旋成体高速入水可压缩性影响研究[J]. 兵工学报, 2020, 41(4): 720-729.
[32] EROSHIN V A, ROMANENKOV N I, SEREBRYAKOV I V, et al. Hydrodynamic forces produced when blunt bodies strike the surface of a compressible fluid[J]. Fluid Dynamics, 1980, 15(6): 829-835.
[33] MARSTON J O, TRUSCOTT T T, SPEIRS N B, et al. Crown sealing and buckling instability during water entry of spheres[J]. Journal of Fluid Mechanics, 2016, 794: 506-529.