以船体基座轻量化为目标,分别从结构设计和材料设计的角度对基座进行轻量化设计。从结构设计出发,采用依赖于经验的分块化设计方法和结合有限元-优化算法的拓扑优化与参数优化设计方法减小结构的体积;从材料设计出发,通过应用碳纤维T700新型复合材料代替原有的钢制结构来减轻结构的密度。研究表明,由于不同方法的减重原理不同,优化后的减重效果和力学性能均存在差异,拓扑设计减重效果最好,减重率达62.8%,参数设计的应力和位移优化效果最好,最大应力和位移的增大率仅为5.8%和22.1%。在实际应用中要根据不同情况选择合适的轻量化设计方法,研究结果可为船舶轻量化设计提供一定参考。
Aiming at the lightweight of hull base, lightweight design of the base is carried out from the perspective of structural design and material design respectively. For the structural design, the experience dependent block design method, topology optimization method and parameter optimization method are used to reduce the weight of the structure combined with finite element optimization algorithm. For the material design, the density of the structure is reduced by replacing the steel structure to carbon fiber T700 composite materials. The research shows that due to the different optimization principles, the weight loss and mechanical properties of the optimized structure are different. The weight reduction effect of the topology design is best, with a weight reduction rate of 62.8%. The stress and displacement optimization effect of material design is the best, with a minimum increase rate of 5.8% and 22.1% respectively. In practical application, appropriate lightweight design methods should be selected according to different requirements. The research of this paper can provide some reference for ship lightweight design.
2025,47(16): 12-19 收稿日期:2024-9-20
DOI:10.3404/j.issn.1672-7649.2025.16.003
分类号:U663.7
作者简介:郭力(1997-),男,博士后,研究方向为船舶结构动力学特性与控制分析
参考文献:
[1] YU Y Y, JIN C G, LIN Y, et al. A practical method for ship structural optimization[C]//The Twentieth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2010.
[2] ZHANG X W, YNAG D Q. Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016, 7(6): 74-91.
[3] 秦浩星, 杨德庆, 张相闻. 负泊松比声学超材料基座的减振性能研究[J]. 振动工程学报, 2017, 30(6): 1012-1021.
QIN H X, YANG D Q, ZHANG X W. Vibration reduction of auxetic acoustic metamaterial mount[J]. Journal of vibration engineering, 2017, 30(6): 1012-1021.
[4] ZHANG W, PEI Z, JIANG J, et al. Research on lightweight design of river-sea-going ship based on isight platform[C]//The 31st International Ocean and Polar Engineering Conference. Lausane, Swizerland, 2021.
[5] PUTRA G L, KITAMUTA M, TAKEZAWA A. Structural optimization of stiffener layout for stiffened plate using hybrid GA[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 809-818.
[6] AGUIARI M, GAIOTTI M, RIZZO C M. Ship weight reduction by parametric design of hull scantling[J]. Ocean engineering, 2022, 263: 112370.
[7] ZHANG C, ZEGN Z, JI C. Structure design of the ship pedestal based on topology optimization[C]//MARINE VIII: proceedings of the VIII International Conference on Computational Methods in Marine Engineering. CIMNE, 2019.
[8] JIA D, LI F. Design of bulkhead reinforcement of trimaran based on topological optimization[J]. Ocean Engineering, 2019, 191: 106498.
[9] SHAH V, KASHANIAN K, PAMWAR M, et al. Multi-material topology optimization considering manufacturing constraints[J]. SAE International Journal of Advances and Current Practices in Mobility, 2020, 2(6): 3268-3277.
[10] YU Y, WEI M, CUI Y, et al. Reliability-based topology-topography optimization for ship bulkhead structures considering multi-failure modes[J]. Ocean Engineering, 2024, 293: 116681.
[11] LI K, YI Z, LING C, et al. Weight minimization of ship chamber structure in vertical ship lift design based on multi-level structural optimization method[J]. Journal of Marine Science and Technology, 2018, 26(4): 9-21.
[12] 唐华平, 李红星, 姜永正, 等. 基于拓扑优化与多目标优化的给料机关键部件结构设计[J]. 机械强度, 2020, 42(4): 842-848.
TANG H P, LI H X, JIANG Y Z, et al. Structural design of key components of feeder based on topology optimization and multi-objective optimization[J]. Mechanical strength, 2020, 42(4): 842-848.
[13] MA M, PAIK J K, MC N T. Hierarchically decomposed multi-level optimization for ship structural design[C]//International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2016.
[14] 张媛媛, 赵勇, 岳斌, 等. 基于拓扑优化和参数优化方法的箱体轻量化研究[J]. 南方农机, 2024, 55(6): 149-152.
ZHANG Y Y, ZHAO Y, YUE B, et al. Research on lightweight of enclosures based on topology optimization and parameter optimization[J]. China Southern Agricultural Machinery, 2024, 55(6): 149-152.
[15] 佘小林, 杨德庆. 船舶舵机基座轻量化设计[J]. 中国舰船研究, 2020, 15(1): 170-176.
SHE X L, YANG D Q. Lightweight design of ship steering gear foundation[J]. Chinese Journal of Ship Research, 2020, 15(1): 170-176.
[16] 肖先林, 王长金, 赵桂平. 碳纤维复合材料-泡沫铝夹芯板的冲击响应[J]. 振动与冲击, 2018, 37(15): 110-117.
XIAO X L, WANG C J, ZHAO G P. Dynamic responses of carbon fiber composite sandwich panels with aluminum foam core subjected to impact loading[J]. Journal of Vibration and Shock, 2018, 37(15): 110-117.
[17] 丁浩, 罗应许, 朱世根. 基于T700碳纤维复合材料的箱体结构优化设计[J]. 塑料工业, 2021, 49(7): 153-158.
DING H, LUO Y X, ZHU S G. Optimization design of box structure based on T700 carbon fiber composite material[J]. China Plastics Industry, 2021, 49(7): 153-158.