针对舰船高温管路系统出现异常振动噪声的问题,需要研究温度变化对管路振声特性的影响。首先采用大涡模拟结合FW-H方程的方法,通过流体计算得到弯管的流场特性和流噪声声压级,分析管路在不同温度下的速度场分布、压力场分布和流噪声声压级,揭示了流场的分布特征和流噪声的总声压级随温度变化影响。然后采用模态分析和流固耦合的方法,通过数值模拟得到弯管的固有频率和振动速度,分析高温与常温下管路的模态结果与流激振动特性,揭示结构固有频率和振速总级随温度变化的影响。最后为减小中低频段内高温管路流激振动的影响,添加支撑进一步优化结构的振动水平。
To solve the problem of abnormal vibration and noise in ship high-temperature piping system, it is necessary to study the influence of temperature change on piping vibration and sound characteristics. First, large eddy simulation combined with FW-H equation was used to obtain the flow field characteristics and flow noise sound pressure level of the bent pipe through fluid calculation. The distribution of velocity field, pressure field and flow noise sound pressure level of the pipe at different temperatures were analyzed, and the distribution characteristics of the flow field and the influence of the total sound pressure level of flow noise on the change of temperature were revealed. Then the modal analysis and fluid-structure coupling method are used to obtain the natural frequency and vibration velocity of the bent pipe through numerical simulation. The modal results and fluid-induced vibration characteristics of the pipe at high temperature and normal temperature are analyzed to reveal the influence of the natural frequency and vibration velocity of the structure with the change of temperature. Finally, in order to reduce the influence of flow-induced vibration of high temperature pipelines in middle and low frequency bands, support is added to further optimize the vibration level of the structure.
2025,47(16): 20-27 收稿日期:2024-11-4
DOI:10.3404/j.issn.1672-7649.2025.16.004
分类号:U664.84
基金项目:国家自然科学基金青年科学基金项目(52201366)
作者简介:李永正(1981-),男,博士,教授,研究方向为结构力学
参考文献:
[1] XU F, WU W, LIN Y, et al. Numerical investigation on noise reduction technique of ship elbow pipes with damping materials[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2020.
[2] 程利, 陈明, 汪利. 压力脉动条件下输流管道振动特性分析[J]. 舰船科学技术, 2023, 45(15): 71-76.
CHENG L, CHEN M, WANG L. Vibration characteristics of pipeline under pressure fluctuation[J]. Ship Science and Technology, 2023, 45(15): 71-76.
[3] MORI M, MASUMOTO T, ISHIHARA K. Study on acoustic, vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section[J]. Applied Acoustics, 2017, 12(2): 137-147.
[4] 袁霄, 蒋建珍, 何周峰, 等. 船舶消防90°弯管内流动声学特性研究[J]. 工程机械, 2024, 55(4): 92-101+11.
YUAN X, JIANG J Z, HE Z F, et al. Study on acoustic characteristics of flow in 90° bend for marine fire protection[J]. Construction Machinery, 2024, 55(4): 92-101+11.
[5] LI C, YAN S, WEN D, et al. CFD analysis of flow noise at tees at natural gas station[J]. Noise Control Engineering Journal, 2018, 66(1): 1-10.
[6] SUN L, ZHE C, GUO C, et al. Numerical simulation regarding flow-induced noise in variable cross-section pipelines based on large eddy simulations and Ffowcs Williams–Hawkings methods[J]. AIP A{\rm{d}}Vances, 2021, 11(6): 1-9.
[7] 朱思敏. 基于流固耦合的船舶管系弯管流动声学特性研究[D]. 北京: 北京交通大学, 2022.
[8] SATRIA I. Analysis of mode shape due to flow induced vibration in pipes as a function of flow pattern[J]. Jurnal Teknik Industri Terintegrasi (JUTIN), 2024, 7(1): 584-589.
[9] 吴江海, 尹志勇, 王纬波, 等. 船用复合材料管路振动特性试验研究[J]. 舰船科学技术, 2020, 42(7): 85-89+122.
WU J H, YIN Z Y, WANG W B, et al. Experimental study on vibration characteristics of marine composite pipeline [J]. Ship Science and Technology, 2019, 42(7): 85-89+122.
[10] 柯兵. 管路弯头流致振动的影响因素分析[J]. 中国舰船研究, 2018, 13(2): 70-75.
KE B. Analysis of influencing factors of flow induced vibration of pipeline elbow[J]. Chinese Ship Research, 2018, 13(2): 70-75.
[11] HAMBRIC S A, BOGER D A, FAHNLINE J B, et al. Structure-and fluid-borne acoustic power sources in 90 degree piping elbows excited by turbulent flow[C]//ASME Pressure Vessels and Piping Conference. 2006, 47888: 29-38.
[12] WANG Y, ZHE C, GUO C, et al. Numerical analysis of flow-induced vibration and noise generation in a variable cross-section channel[J]. Fluid Dynamics & Materials Processing, 2023, 19(12): 2971-2979.
[13] 赵江, 俞建峰, 楼琦. 基于流固耦合的T型管振动特性分析[J]. 振动与冲击, 2019, 38(22): 117-123+170.
ZHAO J, YU J F, LOU Q. Vibration characteristics analysis of t-tube based on fluid-structure coupling[J]. Journal of Vibration and Shock, 2019, 38(22): 117-123+170.
[14] 付建宇. 高温蒸汽管路振动特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[15] OLUNLOYO V O S, OYEDIRAN A A, OSHEKU C A, et al. Dynamics and stability of a fluid conveying vertical beam[C]//International Conference on Offshore Mechanics and Arctic Engineering, 2007.
[16] ADELAJA A O. Temperature modulation of the vibrational responses of a flexible fluid-conveying pipe[J]. Central European Journal of Engineering, 2013, 4(2): 740-749.
[17] XU W W, WU D Z, WANG L Q. Coupling analysis of fluid-structure interaction in fluid-filled elbow pipe[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2012.
[18] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.