针对400 MPa级HTS-A船用钢材料,开展拉伸力学性能试验、冲击韧性试验以及十字接头典型焊接节点在低温环境下的疲劳性能试验,得到-60℃低温环境下HTS-A钢十字接头的S-N曲线,综合比较低温与常温环境下HTS-A钢十字接头的疲劳性能,明确低温对疲劳性能的影响规律。结果表明,低温和常温环境下HTS-A钢材母材试样和十字接头试样疲劳寿命均高于规范C曲线和D曲线寿命,规范S-N曲线仍然适用于低温(-60℃)环境下的结构疲劳强度评估,但结果偏于保守,低温十字接头试样疲劳寿命分别为常温和D曲线的1.21倍和1.35倍。
The tensile mechanical properties test, impact toughness test, and fatigue performance test of typical welding joints of 400 MPa grade HTS-A marine steel cross joints were carried out in a low-temperature environment. The S-N curve of HTS-A steel cross joints at -60°C was obtained. By comprehensively comparing the fatigue performance of HTS-A steel cross joints at low and normal temperatures, the influence pattern of low temperature on fatigue performance was clarified. The results indicate that the fatigue life of both the base material and the cross joint samples of HTS-A steel in low and normal temperature environments is higher than the life specified by the C-curve and D-curve standards. This shows that the standard S-N curves are still applicable for evaluating the structural fatigue strength in low-temperature (-60°C) environments, although the results tend to be conservative. The fatigue life of low-temperature cross joint samples is 1.21 times that at normal temperature and 1.35 times that of the D-curve.
2025,47(16): 33-37 收稿日期:2024-8-13
DOI:10.3404/j.issn.1672-7649.2025.16.006
分类号:U661.43
基金项目:国家重点研发计划资助项目(2024YFE0104300);国家自然科学基金资助项目(52001284,52192694)
作者简介:夏齐强(1984-),男,博士,高级工程师,研究方向为舰船工程
参考文献:
[1] BRAUN M, EHLERS S. Review of methods for the high-cycle fatigue strength assessment of steel structures subjected to sub-zero temperature[J]. Marine structures, 2022, 82: 103153.
[2] ZHANG S, BRIDGES R, TONG J. Fatigue design assessment of ship structures induced by ice loading-an introduction to the ShipRight FDA ICE procedure[C]//ISOPE International Ocean and Polar Engineering Conference, 2011.
[3] KUBICZEK J M, ANDRESEN-PAULSEN G, HERRNRING H, et al. Development of a design load patch for the consideration of ice loads[J]. Ships and Offshore Structures, 2020, 15(S1): 20-28.
[4] BÖHM A M, HERRNRING H, EHLERS S. The measurement accuracy of instrumented ship structures under local ice loads using strain gauges[J]. Marine structures, 2021, 76: 102919.
[5] 廖小伟. 低温环境下桥梁钢材与焊接细节的疲劳性能研究[D]. 北京: 清华大学, 2018.
[6] WANG Y, LIU J, HU J, et al. Fatigue strength of EH36 steel welded joints and base material at low-temperature[J]. International Journal of Fatigue, 2021, 142: 105896.
[7] ZHAO W, FENG G, LIU W, et al. Research on fatigue properties of typical welded joints of DH36 steel at- 60 C[J]. Applied Sciences, 2020, 10(11): 3742.
[8] 中国国家标准化管理委员会. 金属材料拉伸试验第1部分室温试验方法: GB/T 228.1-2010 [S]. 北京: 中国标准出版社, 2010.
[9] 中国国家标准化管理委员会. 金属材料低温拉伸试验方法: GB/T 13239-2006[S]. 北京: 中国标准出版社, 2006.
[10] 中国国家标准化管理委员会. 金属材料夏比摆锤冲击试验方法: GB/T 229-2020[S]. 北京: 中国标准出版社, 2020.
[11] 中国国家标准化管理委员会. 金属材料疲劳裂纹扩展速率试验方法: GB/T 6398-2017[S]. 北京: 中国标准出版社, 2017.