在LNG液舱建造中,围护系统受到脚手架垫块的垂向压缩载荷作用,垫块压力需控制在限值内以避免损坏围护系统。以Mark III型薄膜围护系统为研究对象,基于抗压试验结果开展非线性有限元计算,验证相关参数设置的合理性;总结围护系统关键失效模式,建立基于许用应力的抗压承载能力判定方法;调整设计参数分析围护系统抗压承载能力主要影响因素,探讨结构薄弱环节。阐明垫块作用面积、树脂绳间距与宽度、底层合板厚度及泡沫密度对抗压承载能力的影响,根据最优设计参数判定准则选定设计参数,围护系统临界承载能力提升22.7%。通过改善底层合板受力,可有效提升围护系统抗压能力,研究成果可为新型围护系统设计与建造过程中的安全评估提供参考。
During the construction of liquefied natural gas (LNG) tanks, the cargo containment system (CCS) is subjected to vertical compressive loads from scaffolding pads, and the pad pressures need to be controlled within limits to avoid damage to the CCS. The Mark III type thin-film CCS was selected as the research object. Based on the compression test results, nonlinear finite element calculations are performed to verify the reasonableness of the relevant parameter settings; the key failure modes of the CCS are summarized, and a method for determining the compressive capacity based on the allowable stress is established. The design parameters are adjusted to analyze the main factors influencing the compressive capacity of the CCS and to investigate the structural weaknesses. The effects of pad area, mastic rope spacing and width, back plywood thickness, and foam density on the compressive capacity were elucidated. The design parameters were selected according to the optimal design parameter determination criterion, and the critical bearing capacity of the CCS was increased by 22.7%. By improving the strength of the back plywood, the compressive capacity of the CCS can be effectively improved. The research results can provide a reference for safety assessment in the design and construction of new cargo containment systems.
2025,47(16): 38-45 收稿日期:2024-12-3
DOI:10.3404/j.issn.1672-7649.2025.16.007
分类号:U671.42
基金项目:国家自然科学基金资助项目(52175239, U2241266, 51979163)
作者简介:高大威(1979-),女,博士,教授,研究方向为结构安全优化设计
参考文献:
[1] 张玉奎, 郑文青, 高明星, 等. 大型薄膜型LNG船疲劳强度分析[J]. 舰船科学技术, 2024, 46(15): 9-15.
ZHANG Y K, ZHENG W Q, GAO M X, et al. Fatigue strength analysis of a large membrane LNG carrier[J]. Ship Scienceand Technology, 2024, 46(15): 9-15.
[2] 张济, 刘在良, 何海华, 等. 大型LNG动力船液舱晃荡耦合作用下运动响应计算[J]. 舰船科学技术, 2024, 46(5): 1-5.
ZHANG J, LIU Z L, HE H H, et al. Calculation of motion response of large LNG powered ship tank under swaying coupling[J]. Ship Scienceand Technology, 2024, 46(5): 1-5.
[3] KIM J H, KIM S K, KIM M H, et al. Numerical model to predict deformation of corrugated austenitic stainless steel sheet under cryogenic temperatures for design of liquefied natural gas insulation system[J]. Materials & Design, 2014, 57: 26-39.
[4] SHIM H B, YOON I S. Fatigue Life assessment of KC-1 membrane considering the effects of cryogenic temperature and plastic deformation[J]. Int J Precis Eng Manuf, 2020, 21(5): 905-914.
[5] CHA S J, KIM J D, KIM S K, et al. Effect of temperature on the mechanical performance of plywood used in membrane-type LNG carrier insulation systems [J]. Journal of Wood Science, 2020, 66(1).
[6] LEE C-S, LEE J-M. Failure analysis of reinforced polyurethane foam-based LNG insulation structure using damage-coupled finite element analysis[J]. Composite Structures, 2014, 107: 231-245.
[7] PARK K B, KIM H T, HER N Y, et al. Variation of mechanical characteristics of polyurethane foam: effect of test method[J]. Materials, 2019, 12(17): 20.
[8] SOHN J M, BAE D M, BAE S Y, et al. Nonlinear structural behaviour of membrane-type LNG carrier cargo containment systems under impact pressure loads at–163 °C[J]. Ships and Offshore Structures, 2017, 12(5): 722-733.
[9] HAN S, RIM C W, CHO H, et al. Experimental study on the structural behavior of secondary barrier of Mark-III LNG CCS[C]//International Conference on Offshore Mechanics and Arctic Engineering. 2009, 43413: 101-107.
[10] JEON S G, KIM J H, KIM J D, et al. Impact failure characteristics of LNG carrier cargo containment system [J]. International Journal of Mechanical Sciences, 2023(240): 107938.
[11] DNV. Sloshing analysis of LNG membrane tanks [S]. 2016.
[12] ABS. Strength assessment of membrane-type LNG containment systems under sloshing loads [S]. 2006.
[13] CHUN M S, KIM M H, KIM W S, et al. Experimental investigation on the impact behavior of membrane-type LNG carrier insulation system[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 901-907.
[14] KIM D H, KIM J H, KIM H T, et al. Evaluation of PVC-type insulation foam material for cryogenic applications [J]. Polymers, 2023, 15(6): 20.
[15] SONG H C. Assessment of cryogenic material properties of R-PUF used in the CCS of an LNG carrier[J]. Journal of Ocean Engineering and Technology, 2022, 36(4): 217-231.