为深入探讨不同来流角度下三棱柱振子流致振动响应机理,本文基于二维数值计算方法和剪切压力传输SST k-ω湍流模型,利用Fluent软件自定义函数对数值模型进行二次开发,构建三棱柱流固耦合数值分析模型,实现三棱柱流致振动响应的精准预测,在此基础上分析振子截面几何特征和来流角度对结构振动响应及流场演变规律。研究结果表明,三棱柱的振动响应与振动激励机制相比圆柱更加复杂,且来流角度对三棱柱流致振动响应幅值和振动分支模式影响显著。当来流角度为30°、45°及90°时发生高频高振幅的振动模式;当来流角度为0°时表现为低频高幅的驰振特性,此时攻角变化导致升力失稳是其诱发驰振的主要原因;当来流角度为60°时三棱柱振动幅值则显著降低,表现出类似涡激振动的响应特性。
In order to further explore the flow-induced vibration response mechanism of triangular prism oscillator under different inflow angles, based on the two-dimensional numerical calculation method and the SST k-ω turbulence model of shear pressure transport, the numerical model was redeveloped by using the custom function of Fluent software, and the numerical analysis model of fluid-solid coupling for triangular prism was constructed to realize the accurate prediction of the flow-induced vibration response for triangular prism. On this basis, the geometric characteristics of oscillator cross section, the evolution law of the flow field on the structural vibration response and flow field were analyzed. The results show that the vibration response of triangular prism is more complex than that of cylinder, and the inflow angle has a significant effect on the amplitude of the response and the branching mode. The vibration mode of high frequency and high amplitude occurs when the inflow angle is 30°, 45° and 90°; when the incoming flow angle is 0°, the galloping characteristic is low frequency and high amplitude, and the main reason of galloping is the lift instability caused by the change of attack angle. When the inflow angle is 60°, the vibration amplitude of triangular prism decreases significantly, showing a response characteristic similar to that of vortex-induced vibration.
2025,47(16): 46-53 收稿日期:2024-11-4
DOI:10.3404/j.issn.1672-7649.2025.16.008
分类号:TK7;O327
基金项目:国家自然科学基金-青年科学基金项目(52301355);青岛市自然科学基金(23-2-1-108-zyyd-jch,25-1-1-71-zyyd-jch);自主创新科研计划项目(理工科)-青年基金(23CX06008A)
作者简介:王阳阳(1990-),男,博士,讲师,研究方向为海洋结构与流致振动
参考文献:
[1] BLEVINS R D. Flow-Induced Vibration [M]. New York: Van Nostrand Reinhold, 1977.
[2] ZHOU W W, DUAN M L, CHEN R Q, et al. Experimental study on vortex-induced vibration of tension leg and riser for full depth mooring tension leg platform[J]. Journal of Marine Science and Engineering, 2023, 11(1): 180.
[3] ZHU H J, TAO T, ALAM M M, et al. Flow-induced rotation of a circular cylinder with a detached splitter plate and its bifurcation behavior[J]. Applied Ocean Research, 2022, 122: 103150.
[4] KHALAK A, WILLIAMSON C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
[5] LEE J H, BERNITSAS M M. High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter[J]. Ocean Engineering, 2011, 38(16): 1697-1712.
[6] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A new concept in generation of clean and renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2008, 130(4): 10-24.
[7] 任啸辉, 李朋, 王传振, 等. 海洋立管涡激振动抑振-俘能装置试验研究[J]. 山东科技大学学报(自然科学版), 2023, 42(3): 53-62.
REN X H, LI P, WANG C Z, et al. Experimental study on vortex induced vibration suppression-energy harvesting device for marine riser[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(3): 53-62.
[8] 张乾坤, 王博涵, 陈海龙, 等. 加强形式对翼型结构流致振动的影响[J]. 舰船科学技术, 2021, 43(1): 43-47.
ZHANG Q K, WANG B H, CHEN H L, et al. Research on the effect of strengthening form on flow-induced vibration characteristics of airfoil structure[J]. Ship Science and Technology, 2021, 43(1): 43-47.
[9] DEN HARTOG J P. Transmission line vibration due to sleet[J]. Transactions of the American Institute of Electrical Engineers, 1932, 51(4): 1074-1076.
[10] PARKINSON G V, SMITH J D. The square prism as an aeroelastic non-linear oscillator[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17(2): 225-239.
[11] WHITE JR W N. An analysis of the influence of support stiffness on transmission line galloping amplitudes [D]. New Orleans: Tulane University, 1985.
[12] DING L, ZHANG L, WU C M, et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections[J]. Energy Conversion and Management, 2015, 91: 416-426.
[13] ALONSO G, MESEGUER J. A parametric study of the galloping stability of two-dimensional triangular cross-section bodies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(4): 241-253.
[14] ALONSO G, MESEGUER J, PÉREZ-GRANDE I. Galloping stability of triangular cross-sectional bodies: a systematic approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(9-11): 928-940.
[15] KUMAR DE A, DALAL A. Numerical simulation of unconfined flow past a triangular cylinder[J]. International Journal for Numerical Methods in Fluids, 2006, 52(7): 801-821.
[16] 田依农, 薛海. 截面长细比对三棱柱流致振动特性的影响[J]. 水动力学研究与进展(A辑), 2019, 34(5): 655-663.
TIAN Y N, XUE H. Effects of the aspect ratio on the flow induced vibration of a triangular prism[J]. Chinese Journal of Hydrodynamics, 2019, 34(5): 655-663.
[17] 练继建, 燕翔, 刘昉, 等. 正方形截面振子在不同来流方向的单自由度流致振动特性研究[J]. 振动与冲击, 2017, 36(15): 29-35.
LIAN J J, YAN X, LIU F, et al. Flow induced vibration characteristics of a single-DOF square cylinder at different incident angles[J]. Journal of Vibration and Shock, 2017, 36(15): 29-35.
[18] BEARMAN P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluids and Structures, 2011, 27(5-6): 648-658.
[19] 时忠民, 刘名名, 郭晓玲. 计算域对圆柱绕流数值模拟结果的影响[J]. 中国水运(下半月), 2013, 13(7): 83-86+88.
SHI Z M, LIU M M, GUO X L. Influence of computational domain on numerical simulation results of flow around a cylinder[J]. China Water Transport(the second half of the month), 2013, 13(7): 83-86+88.
[20] TU J H, ZHOU D, BAO Y, et al. Flow characteristics and flow-induced forces of a stationary and rotating triangular cylinder with different incidence angles at low Reynolds numbers[J]. Journal of Fluids and Structures, 2014, 45: 107-123.