针对极地运输船舶沿冰区狭窄航道航行的场景,采用非线性有限元软件,对船-层冰的碰撞、摩擦作用进行数值模拟。考虑典型的初始速度与层冰厚度,分析船-冰作用过程中艏部结构的应力、变形损伤、层冰的破碎、能量变化及碰撞力,研究不同初始速度对结构响应的影响。结果表明,由于结构变形和冰破碎,碰撞力会不断出现卸载现象;随初始速度的增加,艏部左侧和右侧的最大碰撞力均会变大;随初始速度的增加,冰体和结构的变形能均变大,且同一时刻冰体变形能与结构变形能的比值在变大。
The collision and friction between the ship and the level ice were numerically simulated using nonlinear finite element method, with a focus on a polar transport ship navigating through a narrow ice channel. Based on typical initial ship velocity and ice thickness, the structural stress, structural deformation, the fracturing of level ice, the energy change and the ice force were analyzed during the interaction between the ship and the level ice. Additionally, the influence of different initial velocities on the structural response was investigated. It is shown that the ice force will unload continuously due to structural deformation and ice fracturing. As the initial velocity increases, the maximum ice force on both sides of the bow's port and starboard will also increase. Moreover, with the increase of the initial velocity, both the ice and structure experience heightened deformation energy while the ratio of the deformation energy of the ice to that of the structure also increases at the same time.
2025,47(16): 54-60 收稿日期:2024-9-15
DOI:10.3404/j.issn.1672-7649.2025.16.009
分类号:U661.4
基金项目:工信部高技术船舶科研项目(2021-342)
作者简介:董海波(1985-),男,硕士,高级工程师,研究方向为极地船舶冰载荷及结构安全性评估
参考文献:
[1] 王健伟, 邹早建. 基于非线性有限元法的船舶-冰层碰撞结构响应研究[J]. 振动与冲击, 2015, 34(23): 125-130.
[2] 金言, 胡嘉骏, 刘俊杰. 冰区航行船层冰作用下的结构响应[J]. 舰船科学技术, 2017, 39(6): 33-37.
JIN Y, HU J J, LIU J J. Structural dynamic response of the ice navigating ship in level ice[J]. Ship Science and Technology, 2017, 39(6): 33-37.
[3] 徐张, 李锐, 丁琦. 不同类型层冰载荷作用下船首结构响应研究[J]. 舰船科学技术, 2021, 43(10): 10-15.
XU Z, LI R, DING Q. Research on bow structure response under different ice loads[J]. Ship Science and Technology, 2021, 43(10): 10-15.
[4] 赵瑾, 王燕舞, 李哲, 等. 船首结构冰致动力响应的准静态等效研究[J]. 中国舰船研究, 2023, 18(6): 158-166.
[5] 张健, 王凯民, 何文心. 连续破冰模式下极地破冰船艏部冰载荷计算方法研究[J]. 中国造船, 2018, 59(3): 155-163.
[6] 高良田, 王健伟, 王庆, 等. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227-237.
[7] MYLAND D, EHLERS S. Theoretical investigation on ice resistance prediction methods for ships in level ice[C]// International Conference on 0ffshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2014, 45561: V010T07A015.
[8] 王超, 曹成杰, 熊伟鹏, 等. 基于近场动力学的破冰阻力预报方法研究[J]. 哈尔滨工程大学学报, 2021, 42(1): 1-7.
[9] FANG L, MIKKO S, PENTTI K. Ship performance in ice channels narrower than ship beam: Model test and numerical investigation[J]. Ocean Engineering, 2021, 240: 109922.
[10] 刘俊杰, 王艺陶, 赵南, 等. 油船极地航行与浮冰碰撞动响应特性研究[J]. 舰船科学技术, 2020, 42(12): 163-168.
LIU J J, WANG Y T, ZHAO NAN, et al. Analysis on the dynamic response characteristics of oil tanker colliding with floating ice navigating in polar area[J]. Ship Science and Technology, 2020, 42(12): 163-168.
[11] 闫孟娇, 朱凌. 浮冰碰撞载荷作用下船体板结构动力响应研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(2): 268-272.
[12] 吴刚, 张东江. 极地战略 船舶先行[J]. 船舶, 2014, 25(6): 1-8.
[13] International Association of Classification Societies. Requirements concerning Polar Class(UR-I)[S]. 2016.