实时监测船体结构应力和强度评估,对保障船舶的安全尤为重要,但由于空间和成本的限制,监测传感器只能安装在船体结构的有限位置,难以监测船体的所有危险区域。船体结构应力监测反演技术是解决这一问题的有效方法。本文以14000 TEU集装箱船为研究对象,选择垂向弯曲、水平弯曲和扭转3种振型作为求解基,结合监测位置的应力结果,探究船舶应力监测中数字应力监测技术的模态选择。基于监测设备的实测应力与基础模态应力,采用最小二乘法计算各基础模态系数,用模态叠加法得到整个船体结构的应力响应。使用反演值与实际响应的相对误差作为评价指标,验证了数字孪生系统的可靠性以及模态选择方法的可行性,得出了一至三阶垂弯、一至三阶扭转以及一阶横弯是最可靠的基础模态组合的结论。
Real-time monitoring of hull structure stress and strength assessment is crucial for ensuring the safety of ships. However, due to space and cost constraints, monitoring sensors can only be installed at limited positions on the hull structure, making it difficult to monitor all potentially hazardous areas of the hull. Hull structure stress monitoring inversion technology is an effective solution to this problem. This paper takes a 14000TEU container ship as the research object, selecting vertical bending, horizontal bending, and torsion as the three modes for the solution basis. Combined with the stress results at the monitoring locations, it explores the mode selection of digital stress monitoring technology in ship stress monitoring. Based on the measured stress from the monitoring equipment and the fundamental modal stresses, the least squares method is used to calculate the coefficients of each fundamental mode, and the modal superposition method is employed to obtain the stress response of the entire hull structure. The relative error between the inversion values and the actual response is used as an evaluation metric, verifying the reliability of the digital twin system and the feasibility of the modal selection method. The conclusion is drawn that the combination of the first to third-order vertical bending modes, the first to third-order torsional modes, and the first-order horizontal bending mode is the most reliable set of fundamental modes.
2025,47(16): 61-68 收稿日期:2024-9-5
DOI:10.3404/j.issn.1672-7649.2025.16.010
分类号:U661.4
作者简介:张超群(1990-),男,硕士,助理研究员,研究方向为船舶结构实船监测
参考文献:
[1] OKASHA N M, FRANGOPOL D M, DECÒ A. Integration of structural health monitoring in life-cycle performance assessment of ship structures under uncertainty[J]. Marine Structures, 2010, 23(3): 303-321.
[2] BALDWIN C, KIDDY J, SALTER T, et al. Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton[C]//Oceans'02 MTS/IEEE. IEEE, 2002.
[3] HJELME D R, BJERKAN L, NEEGARD S, et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle models[J]. Applied Optics, 1997, 36(1): 328-336.
[4] WANG G, PRAN K, SAGVOLDEN G, et al. Ship hull structure monitoring using fibre optic sensors[J]. Smart Materials and Structures, 2001, 10(3): 472-478.
[5] 胡雄, 孙德建, 金永兴, 等. 集装箱船舶结构状态的在线监测技术研究[J]. 中国工程机械学报, 2009, 7(4): 459-462.
[6] 贾连徽. 船舶运动与应力实时监测系统的研究与开发[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[7] 刘彦麟. 3 万吨舰船结构健康监测中的力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[8] NIELSEN U D, JENSEN J J, PEDERSEN P T, et al. Onboard monitoring of fatigue damage rates in the hull girder[J]. Marine Structures, 2011, 24(2): 182-206.
[9] 于海成. 超大型集装箱船砰击颤振响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[10] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge University Press, 1993.
[11] 黄强, 李辉, 任慧龙, 等. 基于船体梁的船体弹性变形预报方法[J]. 船舶工程, 2017, 39(8): 13-17.
[12] 焦甲龙, 陈超核, 任慧龙, 等. 随机海浪中船舶波浪载荷与砰击载荷的时域水弹性响应分析[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集 (下册), 2019.
[13] KHARIF C, PELINOVSKY E. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics-B/Fluids, 2003, 22(6): 603-634.
[14] 许会芬. 超大型集装箱船弯扭耦合弹振响应及对疲劳强度影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[15] 陈超核, 钟伟芳. 集装箱船结构设计波浪载荷计算[J]. 华中科技大学学报: 自然科学版, 2008, 36(10): 110-113.
[16] 焦甲龙, 陈超核, 任慧龙. 真实海况下船舶水弹性响应及砰击载荷的大尺度模型试验研究[J]. 船舶力学, 2021, 25(2): 137-145.