为探究某核动力堆舱舱段结构在碰撞载荷作用下的损伤特性以及堆舱结构内部的冲击环境,开展缩比堆舱结构模型水上碰撞试验,进一步建立堆舱舱段有限元模型;开展碰撞数值仿真分析,通过与试验的撞击力、堆舱内部典型位置的加速度响应及舷侧结构的变形损伤情况进行对比,典型工况的撞击力峰值误差最大误差为8.7%,加速度最大峰值的最大误差为19.5%和最大损伤变形值的最大误差为13.3%,验证了数值计算方法的合理性。进而开展堆舱结构整船模型在受到15000 t级远洋渔船以10 kn航速碰撞的数值计算分析,舷侧结构产生5.4 m×3.9 m的破口及3.9 m×1.1 m的凹陷损伤,堆舱顶部防护结构产生了5.6 m×1.0 m范围的局部塑性变形,具有较好的抗碰撞性能。研究工作可为同类结构的碰撞模型试验研究提供参考。
In order to investigate the damage characteristics of a nuclear power reactor compartment segment structure under collision loading and the impact environment inside the compartment structure. A scaled-down reactor compartment structure model on-water collision test was carried out, and a finite element model of the reactor compartment segment was further established to carry out collision numerical simulation and analysis. By comparing with the impact force size, the acceleration response of the typical position inside the reactor compartment and the deformation and damage of the side structure, the maximum error of the peak impact force of the typical conditions is 8.7%, the maximum error of the peak acceleration is 19.5% and the maximum error of the maximum damage and deformation values is 13.3%, which verifies the reasonableness of the numerical calculation method. The numerical calculation analysis of the whole ship model of the stacking compartment structure was carried out when it was collided by a 15000 t-class ocean-going fishing vessel at a speed of 10 knots, and the side structure produced a breach of 5.4m×3.9m and a dent damage of 3.9 m×1.1 m, and the top protective structure of the stacking compartment produced a localized plastic deformation in the range of 5.6m×1.0m, which had a better collision resistance performance. The research work can provide a reference for the collision modeling study of similar structures.
2025,47(16): 69-75 收稿日期:2024-10-17
DOI:10.3404/j.issn.1672-7649.2025.16.011
分类号:U661.4
作者简介:顾颖宾(1971-),男,博士,正高级工程师,研究方向为核反应堆运行管理、海洋核动力技术
参考文献:
[1] 徐俊峰, 邱金荣, 宋飞飞. 核动力破冰船概念设计研究[C]//中国核学会2009年学术年会论文集. 北京: 中国核学会, 2009: 1273-1277.
[2] 李勇, 林原胜, 谭思超, 等. 海洋核动力平台堆舱非能动冷却特性研究[J]. 原子能科学技术, 2017, 51(4): 652-658.
LI Y, LIN Y S, TAN S C, et al. Dynamic characteristics of passive compartment cooling for marine nuclear power platform[J]. Atomic Energy Science and Technology, 2017, 51(4): 652-658.
[3] 于福祥. 海洋核动力平台搁浅损伤及剩余强度研究[D]. 大连: 大连理工大学, 2016.
[4] MINORSKY V U. An analysis of ship collision to protection of nuclear powered plant[J]. Ship Research, 1959, 3(2): 1-4.
[5] PEDERSEN P T, ZHANG S. Absorbed energy in ship collisions and ground-revising Minorsky's empirical method[J]. Journal of Ship Research, 2000, 44(2): 140-154.
[6] UEDA Y, RASHED S M. An ultimate transverse strength analysis of ship structure[J]. Society of Naval Architects, 1975, 13: 87-104.
[7] PAIK J K, PEDERSEN P T. Modelling of the internal mechanics in ship collisions[J]. Ocean Engineering, 1996, 23(2): 107-142.
[8] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型[J]. 爆炸与冲击, 2002, 22(4): 321-326.
WANG Z L, JIANG Z Y, GU Y N. An added water mass model for numerical simulation of ship-ship collisions[J]. Explosion and Shock Waves, 2002, 22(4): 321-326.
[9] 张新字, 曹俊伟, 骆伟, 等. 双壳船体结构在楔形物撞击下的损伤特性试验及数值仿真分析[J]. 中国舰船研究, 2019, 14(1): 89-94.
ZHANG X Y, CAO J W, LUO W, et al. Test and numerical analysis on the damage characteristics of double-hull ship structures suffering head-on collision by a wedge indenter[J]. Chinese Journal of ship Research, 2019, 14(1): 89-94.
[10] 万江鹏. 双舷侧复合材料船舶碰撞响应与损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[11] YANG L, WANG D Y. Experimental and numerical investigation on the response of stiffened panels subjected to lateral impact considering material failure criteria[J]. Ocean Engineering, 2019, 184: 193-205.
[12] 王子棠. 舰船结构碰撞响应简化计算方法研究[D]. 武汉: 武汉理工大学, 2021.
[13] 卢安格, 王子棠, 孔祥韶, 等. 船舶结构碰撞试验及简化数值计算方法研究[J]. 中国舰船研究, 2024, 19(2): 128-139.
LU A G, WANG Z T, KONG X S, et al. Ship structure collision experiments and simplified numerical calculation method[J]. Chinese Journal of Ship Research, 2024, 19(2): 128-139.
[14] 王德明. 核动力破冰船安全壳舱段结构强度评估方法研究[D]. 大连: 大连海事大学, 2022.
[15] 曲源, 陈冠宇, 刘均, 等. 某核动力平台双层舷侧结构耐撞性试验及数值分析[J]. 中国舰船研究, 2022, 17(A1): 59-65.
QU Y, CHEN G Y, LIU J, et al. Experiment and numerical analysis of crashworthiness of the double-skin side structure on a nuclear power platform[J]. Chinese Journal of ship Research, 2022, 17(A1): 59-65.
[16] 肖桃云, 王涛. 三峡库区船舶碰撞能量损失方法的研究[J]. 中国舰船研究, 2008, 3(5): 25-31.
XIAO T Y, WANG T. Energy loss during ship-ship collisions in the Sanxia reservoir[J]. Chinese Journal of Ship Research, 2008, 3(5): 25-31.
[17] ZHANG A, SUZUKI K. Dynamic FE simulations of the effect of selected parameters on grounding test results of bottom structures[J]. Ships and Offshore Structures, 2006, 1(2): 117-125.