海洋中内波频发,携带巨大能量,对水下航行体的安全航行有巨大威胁。基于非静压海洋环流模型MITgcm,在连续密度分层环境场下,模拟内波生成传播的全过程。并通过自定义边界条件,在STAR-CCM+中实现连续内波波列的重现。在小范围数值水槽中,基于RANS方法,对水下航行体约束状态下遭遇实际环境场中内波波列时的水动力载荷进行研究。分析表明,该情况下水动力载荷前后变化规律类似,水平力、俯仰力矩变化幅值相差不大,垂向力相差接近两倍。并对不同潜深工况下水下航行体遭遇内孤立波进行研究,结果表明,载荷变化规律取决于水下航行体相对于密度跃层的位置。
Internal solitary waves (ISWs) appear frequently in ocean, which carries huge energy and are serious threats to the safe navigation of submersible. Firstly, simulating the entire generation and propagation process of internal wave in a continuous density stratified environmental field by using the non hydrostatic ocean circulation model MITgcm. And by defining boundary conditions, accurate simulation of the internal solitary wave packet generated in the MITgcm model is achieved in STAR CCM+. In a small-scale numerical water tank, the RANS method was used to numerically simulate the hydrodynamic load of submersible under constrained conditions when encountering internal solitary wave packet. Results show that in this situation the change pattern of hydrodynamic load before and after is similar, with little difference in the amplitude of horizontal force and pitch moment changes, and nearly twice the difference in vertical force. And research was conducted on submersible encountering internal solitary waves under different depths, and the results showed that the load variation law depends on the position of the submersible relative to the density jump layer.
2025,47(16): 76-82 收稿日期:2024-12-2
DOI:10.3404/j.issn.1672-7649.2025.16.012
分类号:U674.941
作者简介:魏佳铭(2000-),女,硕士研究生,研究方向为舰船操纵性的数值预报和仿真模拟
参考文献:
[1] 李家春. 水面下的波浪-海洋内波[J]. 力学与实践, 2005, 27(2): 1-6.
LI J C. Bellow under the sea surface-internal waves in the ocean[J]. Mechanics in Engineering, 2005, 27(2): 1-6.
[2] HUANG X D, CHEN Z H, ZGAO W, et al. An extreme internal solitary wave event observed in the northern South China Sea. [J]. Scientific Reports, 2016, 6(1): 30041.
[3] 王展, 朱玉可. 非线性海洋内波的理论、模型与计算[J]. 力学学报, 2019, 51(6): 1589-1604.
WANG Z, ZHU Y K. Theory, modelling and computation of nonlinear ocean internal waves[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1589-1604.
[4] 付东明, 尤云祥, 李巍. 两层流体中内孤立波与潜体相互作用数值模拟[J]. 海洋工程, 2009, 27(3): 38-44.
FU D M, YOU Y X, LI W. Numericalsimulation of internal solitary waves with a submergedbody in a two-layer fluid[J]. The Ocean Engineering, 2009, 27(3): 38-44.
[5] 黄苗苗, 张楠, 朱爱军. 内波作用下水下航行体水动力载荷及运动特性研究[J]. 船舶力学, 2019, 23(5): 531-540
HUANG M M, ZHANG N, ZHU A J. Hydrodynamic loads and motion features of a submersible with interaction of inter-nal solitary waves[J]. Journal of Ship Mechanics, 2019, 23(5): 531-540.
[6] 姚志崇, 刘传奇, 刘乐, 等. 水下航行器内孤立波载荷形成机理数值模拟研究[J]. 舰船科学技术, 2022, 44(1): 91-96.
YAO Z C, LIU C Q, LIU L, et al. Numerical simulation study on the formation mechanism of internal solitary waves loads acting on a underwater vehicle[J]. Ship Science and Technology, 2022, 44(1): 91-96.
[7] 汪超, 杜伟, 李广华, 等. 海洋内波影响水下航行体水动力特性数值模拟[J]. 中国舰船研究, 2022, 17(3): 102-111.
WANG C, DU W, LI G H, et al. Numerical simulation of influence of ocean internal waves on hydrodynamic characteristics of underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(3): 102-111.
[8] 高原雪, 尤云祥, 王旭, 等. 基于 MCC 理论的内孤立波数值模拟[J]. 海洋工程, 2021, 30(4): 29-36.
GAO Y X, YOU Y X, WANG X, et al. Numerical simulation for the internal solitary wave based on MCC theory[J]. Ocean Engineering, 2021, 30(4): 29-36.
[9] 刘金芳, 毛可修, 张晓娟, 等. 中国海密度跃层分布特征概况[J]. 海洋预报, 2023, 30(6): 21-27.
LIU J F, MAO K X, ZHANG X J, et al. The general distribution characteristics of pycnocline of China Sea[J]. Marine forecasts, 2023, 30(6): 21-27.
[10] 李景远, 张庆河, 陈同庆. 密度连续变化水体内孤立波数值模拟研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(2): 161-170.
LI J Y, ZHANG Q H, CHEN T Q. Numerical simulation of internal solitary wave incontinuously stratified fluid[J]. Journal of Tianjin University (Science and Technology), 2021, 54(2): 161-170.