针对水下机器人(ROV)抗强干扰能力差和易产生抖振等问题,提出一种基于自抗扰控制(ADRC)的非线性光滑曲线cfal以改进扩张状态观测器(ESO)并用于水下机器人姿态控制。首先,建立基于偏航角控制的ROV动力学模型;然后,利用二次函数特征构造一种非线性分段函数cfal用以弥补常规fal函数的缺陷,进一步满足曲线选取的条件,从而降低系统的抗干扰能力并利用李雅普诺夫函数对改进ESO进行稳定性验证;最后,通过仿真实验结果得出,与经典自抗扰控制技术相比,在减少抖振加快响应速率的同时,ROV在分别面对突发干扰、正弦干扰、白噪声干扰以及综合干扰时,其对应的相关区间均方误差分别下降了10.6%,9.2%,16.0%,9.3%。
To address the issues of poor anti-disturbance capability and susceptibility to chattering in remote operated vehicle (ROV) attitude control, a nonlinear smooth function cfal based on active disturbance rejection control (ADRC) is proposed to improve the extended state observer (ESO). First, a dynamic model of the ROV based on yaw angle control is established. Then, leveraging the characteristics of a quadratic function, a nonlinear piecewise function cfal is constructed to overcome the shortcomings of the conventional fal function and better satisfy curve selection conditions, enhancing anti-disturbance capability and verifying the stability of the improved ESO using the Lyapunov function. Simulation results show that compared to classical ADRC, the proposed method reduces chattering, accelerates response speed, and decreases the mean squared error (MSE) by 10.6%, 9.2%, 16.0%, and 9.3% under sudden disturbances, sinusoidal disturbances, white noise disturbances, and composite disturbances, respectively.
2025,47(16): 100-106 收稿日期:2024-11-18
DOI:10.3404/j.issn.1672-7649.2025.16.015
分类号:U66;TP273
基金项目:国家自然科学基金资助项目(62363013);江西省教育厅科学技术重点研究项目(GJJ2200805);江西省自然科学基金资助项目(20224BAB202036);江西理工大学研究生创新计划资助项目(XY2023-S208)
作者简介:鄢化彪(1978-),男,硕士,副教授,研究方向为复杂系统建模及深度学习
参考文献:
[1] 李硕, 吴园涛, 李琛, 等. 水下机器人应用及展望[J]. 中国科学院院刊, 2022, 37(7): 910-920.
LI S, WU Y T, LI C, et al. Application and prospect of un manned underwater vehicle[J]. Bulletin of Chinese Acad emy of Sciences, 2022, 37(7): 910-920.
[2] 徐同乐, 刘方, 肖玉杰, 等. 国外无人反水雷装备及技术发展[J]. 兵工学报, 2022, 43(S2): 64-70.
XU T L, LIU F, XIAO Y J, et al. Foreign unmanned equipment and technology development in mine countermeasures[J]. Acta armamentarii, 2022, 43(S2): 64-70.
[3] XIE Y, ZHU A F, HUANG Z H. Research on the control performance of depth-fixed motion of underwater vehicle based on fuzzy-PID[J]. Journal of Robotics, 2023.
[4] BENZON M V, KLEMMENSEN S, LINIGER J, et al. Integral sliding mode control for a marine growth removing ROV with water jet disturbance[J]. 2021.
[5] W J Q, W C, W Y J, et al. Neuroadaptive sliding mode formation control of autonomous underwater vehicles with uncertain dynamics[J]. IEEE Systems Journal, 2021, 15(2): 2553-2561.
[6] 尹庆华, 王娜, 李广有. 基于观测器的自主式水下机器人反步容错控制[J]. 控制工程, 2024, 31(1): 48-53.
YIN Q H, WANG N, LI G Y. Observer-based backstepping fault-tolerant control of autonomous underwater vehicle[J]. Control Engineering of China, 2024, 31(1): 48-53.
[7] 黄健, 舒晓菂. 基于线性ADRC的欠驱动UUV深度控制器设计[J]. 控制工程, 2019, 26(5): 927-934.
HUANG J, SHU X D. Under-actuated UUV depth controller design based on linear ADRC technology[J]. Control Engineering of China, 2019, 26(5): 927-934.
[8] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002(3): 13-18.
HAN J Q. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002(3): 13-18.
[9] HAN J. From PID to active disturbance rejection control[J]. IEEE transactions on Industrial Electronics, 2009, 56(3): 900-906.
[10] 李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281-295.
LI J, QI X H, WANG H, et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control Theory & Applications, 2017, 34(3): 281-295.
[11] 鄢化彪, 徐炜宾, 黄绿娥. 基于改进ADRC的四旋翼姿态控制器设计[J]. 北京航空航天大学学报, 2023, 49(12): 3283-3292.
YAN H B, XU W B, HUANG L. Design of quadrotorattitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 49(12): 3283-3292.
[12] I T F. Handbook of marine craft hydrodynamics and motion control[M]. Norwegin: John Wiley & Sons Ltd: 2021-04-16.
[13] 窦铭昊, 刘昫辰, 黄东岳, 等. 跨介巡航器水下运动数学建模[J]. 控制工程, 2023, 30(8): 1488-1500.
DOU M H, LIU X C, HUANG D Y, et al. Mathematical modeling of underwater motion for a cross-medium vehicle[J]. Control Engineering of China, 2023, 30(8): 1488-1500.
[14] 于洪国, 康忠健, 陈瑶. 基于双曲正切函数的二阶时变参数扩张状态观测器[J]. 控制理论与应用, 2016, 33(4): 530-534.
YU H G, KANG Z J, CHEN Y. Time-varying parameter second-order externded state observer based on hyperbolic tangent function[J]. Control Theory and Applications, 2016, 33(4): 530-534.
[15] LOZGACHEV G I. On a method of construction of Lyapunov functions[J]. Automation & Remote Control, 1998, 59(10): 1365-1368.