电磁干扰与船舶电站设备的非线性特性相互作用,导致船舶电站的电网电压和频率会出现高频次、大幅度的随机波动,影响负载设备的正常运行,因此提出电磁干扰下船舶电站自动频载模糊控制方法。通过电磁干扰下的船舶电站运行结构分析船舶电站的动态频载,并计算待控制的船舶电站频载稳态偏差量,以掌握频载波动规律。由此,结合船舶电站实时状态矢量与整体频载量测情况,利用IT2T-S模糊控制技术适应船舶电站的复杂非线性特性,最小化频载稳态偏差量。以此抑制电网电压和频率的随机波动,确保船舶电站的安全平稳运行。实验结果表明,该方法可以在电磁干扰下,合理控制船舶电站频载稳态偏差量,控制后的频率偏差标准差均小于0.08 Hz,说明该方法控制具备一致性与稳定性。
The interaction between electromagnetic interference and the nonlinear characteristics of ship power station equipment leads to high-frequency and significant random fluctuations in the voltage and frequency of the ship power station's power grid, which affects the normal operation of load equipment. Therefore, a fuzzy control method for automatic frequency loading of ship power stations under electromagnetic interference is proposed. By analyzing the dynamic frequency load of a ship power station under electromagnetic interference, and calculating the steady-state deviation of the frequency load of the ship power station to be controlled, the fluctuation law of the frequency load can be grasped. Therefore, by combining the real-time state vector of the ship power station with the overall frequency load measurement, the IT2T-S fuzzy control technology is used to adapt to the complex nonlinear characteristics of the ship power station and minimize the steady-state deviation of the frequency load. To suppress the random fluctuations of power grid voltage and frequency and ensure the safe and smooth operation of ship power stations. The experimental results show that this method can reasonably control the steady-state deviation of ship power station frequency load under electromagnetic interference, and the standard deviation of frequency deviation after control is less than 0.08 Hz, indicating that this method has consistency and stability in control.
2025,47(16): 112-116 收稿日期:2025-4-10
DOI:10.3404/j.issn.1672-7649.2025.16.017
分类号:U665.12;TP273.5
基金项目:武汉交通职业学院校级课题(Y2019008)
作者简介:龚成林(1990-),男,硕士,讲师,研究方向为船舶电气及自动化
参考文献:
[1] 田晓, 刘志全. 基于复杂网络理论的船舶电网脆性源辨识方法[J]. 中国舰船研究, 2024, 19(3): 325-336.
TIAN X, LIU Z Q. Brittle source identification method for ship power grid based on complex network[J]. Chinese Journal of Ship Research, 2024, 19(3): 325-336.
[2] 韩平平, 陆中来, 张征凯, 等. 基于减载控制的光伏电站主动频率响应方法[J]. 可再生能源, 2024, 42(7): 972-978.
HAN P P, LU Z L, ZHANG Z K, et al. Active frequency response method of photovoltaic power plant based on load shedding control[J]. Renewable Energy Resources, 2024, 42(7): 972-978.
[3] 朱慧敏, 苑舜, 李春来. 含储能环节的光伏电站虚拟同步发电机控制策略与分析[J]. 电测与仪表, 2023, 60(5): 45-50.
ZHU H M, YUAN S, LI C L. Control strategy and analysis of virtual synchronous generator of photovoltaic power plant with energy storage link[J]. Electrical Measurement & Instrumentation, 2023, 60(5): 45-50.
[4] 张江丰, 柯松, 陈文进, 等. 光伏电站自备用可调的虚拟同步控制调频策略[J]. 中国电力, 2024, 57(11): 108-118.
ZHANG J F, KE S, CHEN W J, et al. Virtual synchronous control frequency regulation strategy for adjustable self-standby rate in photovoltaic plants[J]. Electric Power, 2024, 57(11): 108-118.
[5] 陆晓艳, 白一哲, 彭正伟, 等. 集中式储能电站机电暂态建模及自适应附加功率控制方法[J]. 电网与清洁能源, 2023, 39(10): 85-94.
LU X Y, BAI Y Z, PENG Z W, et al. The electromechanical transient modeling and adaptive additional power control method for mass energy storage system[J]. Advances of Power System & Hydroelectric Engineering, 2023, 39(10): 85-94.
[6] 孙玉伟, 吴健, 刘勇, 等. 集成超临界二氧化碳布雷顿循环发电装置的船舶电力系统暂态稳定性分析[J]. 上海海事大学学报, 2022, 43(1): 104-113.
SUN Y W, WU J, LIU Y, et al. Analysis on transient stability of ship power system with integrated supercritical CO2 Brayton cycle power generation device[J]. Journal of Shanghai Maritime University, 2022, 43(1): 104-113.
[7] 袁康波, 郑迪, 汪伟, 等. 基于EKS的风电并网系统频率特征参数辨识算法[J]. 计算机仿真, 2024, 41(6): 140-145+236.
YUAN K B, ZHENG D, WANG W, et al. Frequency characteristic parameter identification algorithm for wind power grid connected system based on EKS[J]. Computer Simulation, 2024, 41(6): 140-145+236.
[8] 徐成, 刘崇, 王庆. 基于矩阵模型的船舶负载顺序起动仿真[J]. 船舶工程, 2022, 44(2): 99-104.
XU C, LIU C, WANG Q. Shipboard motors sequential starting simulation based on matrix modeling[J]. Ship Engineering, 2022, 44(2): 99-104.