国外水下装备对我海上威胁逐渐增大,需建立水下传感器网络执行监视任务。为此提出一种基于虚拟力扰动的多目标飞蛾优化算法,解决水下异构传感器栅栏覆盖部署策略问题。考虑部署感知半径不同的传感器节点,在算法迭代过程中对飞蛾种群适当给予虚拟力扰动,从而加快优化速度并克服算法受局部最优解束缚的问题。以高覆盖率、低节点平均移动距离作为多目标函数进行优化,通过非支配排序与拥挤度计算得到一组最优部署方案集,进而选择达到覆盖率门限且节点平均移动距离尽可能低的方案作为最优方案。通过典型场景仿真试验验证了所提算法的有效性。相比第二代非支配排序遗传算法,本算法在相同覆盖率条件下节点平均移动距离降低26.6%。进一步探讨提出了适用于不同异构属性的传感器节点部署方案,相关研究可为决策者选取更具实际应用价值的部署策略提供有益支撑。
The threat of foreign underwater equipment to China's sea has gradually increased, and it is necessary to establish underwater sensor networks to perform surveillance tasks. Therefore, a multi-objective moth optimization algorithm based on virtual force disturbance is proposed to solve the problem of barrier coverage deployment strategy of underwater heterogeneous sensors. Considering the deployment of sensor nodes with different sensing radii, the moth population is appropriately perturbed by virtual force in the iteration process of the algorithm, so as to speed up the optimization speed and overcome the problem that the algorithm is constrained by the local optimal solution. It takes high coverage rate and low average movement distance of nodes as the multi-objective function to optimize, obtains a set of optimal deployment scheme sets through non-dominated sorting and congestion calculation, and then selects the scheme that achieves the coverage threshold and the average movement distance of nodes as low as possible as the optimal scheme. The effectiveness of the proposed algorithm is verified by simulation experiments in typical scenarios. Compared with Non-dominated Sorting Genetic Algorithm II, the average moving distance of nodes in the proposed algorithm is reduced by 26.6% under the same coverage rate. Further discuss and put forward the deployment scheme of sensor nodes suitable for different heterogeneous attributes, and the related research can provide beneficial support for decision makers to select a deployment strategy with more practical application value.
2025,47(16): 138-148 收稿日期:2024-11-18
DOI:10.3404/j.issn.1672-7649.2025.16.022
分类号:U666.7
作者简介:刘浩(2000-),男,硕士研究生,研究方向为水下装备与体系创新
参考文献:
[1] 张鸿强, 曾斌, 张利龙. 基于虚拟力的水下传感器监控反潜策略研究[J]. 火力与指挥控制, 2024, 49(1): 49-55.
[2] 闫文敏, 穆志海, 张赫, 等. 国外水下目标监视系统发展分析[J]. 舰船科学技术, 2024, 46(17): 184-9.
[3] 孙佳艺. 水下传感器网络高效节点部署研究 [D], 天津: 天津大学, 2019.
[4] MA M, WU J, SHI Y, et al. Research on multiaircrafts cooperative arraying to jam based on multiobjective moth-flame optimization algorithm[J]. IEEE Access, 2022, 10: 80539-80593.
[5] LI Y, LI T. Ship fuel consumption prediction based on MFO-BP [C]// Proceedings of the 2023 International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), IEEE, 2023.
[6] 王智慧, 代永强, 刘欢. 基于自适应飞蛾扑火优化算法的三维路径规划[J]. 计算机应用研究, 2023, 40(1): 63-69.
[7] 李泽宏, 袁肖峰, 肖鹏, 等. 基于多目标飞蛾扑火算法的水光互补系统优化调度研究 [J]. 长江科学院院报, 2024, 12(1): 1-10.
[8] FU X, LEI L, YANG G, et al. Multi-objective shape optimization of autonomous underwater glider based on fast elitist non-dominated sorting genetic algorithm[J]. Ocean Engineering, 2018, 15(7): 339-49.
[9] CHERAGHI R, HOSSEIN JAHANGIR M. Multi-objective optimization of a hybrid renewable energy system supplying a residential building using NSGA-II and MOPSO algorithms[J]. Energy Conversion and Management, 2023, 29(4): 117515-117525.
[10] 刘旭, 周喜宁, 朱耀龙. 基于NFFD和高斯近似的螺旋桨多目标优化[J]. 舰船科学技术, 2022, 44(19): 46-51.
[11] 陈超, 刘亚东, 何炎平, 等. 极地科考破冰船冰阻力与静水阻力协同优化设计[J]. 船舶工程, 2022, 44(11): 31-5+48.
[12] 王若霖. 基于群智能算法的异构WSN节点部署优化研究 [D], 哈尔滨: 哈尔滨工程大学, 2020.
[13] MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-based systems, 2015, 89(7): 228-49.
[14] ZOU Y, CHAKRABARTY K. Sensor deployment and target localization based on virtual forces [C]// Proceedings of the IEEE INFOCOM 2003 Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat No 03CH37428), IEEE, 2003.