船舶航行的轨迹数据因时间序列稀疏性导致经验路径集中出现分形维度突变,使得路径规划过度关注局部而增加整体耗时。为此,提出基于历史数据挖掘的低延时船舶路径规划方法。分析船舶历史航行数据时间序列,计算路径平均运行速度,构建历史航行经验路径集;针对历史航行经验路径集路径耗散的分形维度,生成初始避碰路径,构建初始避碰路径的目标函数,综合考虑风浪和水流对速度的影响,平滑处理路径耗散分形维度,平衡局部与全局优化,实现船舶最佳低延时航行路径的求解。实验证明,所提方法能够实现船舶路径低延时规划,路径平滑度高,耗时少。
Due to the sparsity of time series, the trajectory data of ship navigation exhibits fractal dimension mutations in the empirical path set, leading to excessive focus on local areas in path planning and increasing overall time consumption. Therefore, a low latency ship path planning method based on historical data mining is proposed. Analyze the time series of historical navigation data of ships, calculate the average running speed of paths, and construct a set of historical navigation experience paths; Based on the fractal dimension of path dissipation in the historical navigation experience path set, generate initial collision avoidance paths, construct the objective function of the initial collision avoidance path, comprehensively consider the influence of wind, waves, and water flow on velocity, smooth the fractal dimension of path dissipation, balance local and global optimization, and achieve the solution of the optimal low delay navigation path for ships. Experimental results have shown that the proposed method can achieve low delay planning of ship paths, high path smoothness, and low time consumption.
2025,47(16): 163-167 收稿日期:2025-3-25
DOI:10.3404/j.issn.1672-7649.2025.16.025
分类号:U697.1
基金项目:山东省自然科学基金面上项目(ZR2024MF024)
作者简介:李宗锋(1981-),男,硕士,副教授,研究方向为信息管理、数据挖掘
参考文献:
[1] 罗春艳, 李元, 殷飞, 等. 考虑最优路径的水面清漂船自主导航算法设计[J]. 计算机仿真, 2022, 39(3): 253-257.
LUO C Y, LI Y, YIN F, et al. Design of autonomous navigation algorithm for surface drifting ship considering optimal path[J]. Computer Simulation, 2022, 39(3): 253-257.
[2] 黄臻, 吴峻. 基于学生t分布的变分贝叶斯UKF算法在无人船对准中的应用[J]. 传感技术学报, 2022, 35(10): 1340-1347.
HUANG Z, WU J. Application of student's T distribution based variational bayesian UKF algorithm in unmanned ship alignment[J]. Chinese Journal of Sensors and Actuators, 2022, 35(10): 1340-1347.
[3] XUE H. A quasi-reflection based SC-PSO for ship path planning with grounding avoidance[J]. Ocean engineering, 2022, 247: 110772.
[4] 张立华, 周寅飞, 贾帅东, 等. 一种有效顾及复杂海域避碰的路径规划方法[J]. 哈尔滨工程大学学报, 2023, 44(1): 56-64.
ZHANG L H, ZHOU Y F, JIA S D, et al. A path planning method for collision avoidance of ships in complex sea areas[J]. Journal of Harbin Engineering University, 2023, 44(1): 56-64.
[5] 张兰勇, 韩宇. 基于改进的RRT*算法的AUV集群路径规划[J]. 中国舰船研究, 2023, 18(1): 43-51.
ZHANG L Y, HAN Y. AUV cluster path planning based on improved RRT*algorithm[J]. Chinese Journal of Ship Research, 2023, 18(1): 43-51.
[6] 周卫祥, 许继强. 基于改进人工势场法的RRT*无人船路径规划算法[J]. 中北大学学报(自然科学版), 2024, 45(2): 123-131.
ZHOU W X, XU J Q. RRT*unmanned ship path planning algorithm based on improved artificial potential field method[J]. Journal of North University of China(Natural Science Edition), 2024, 45(2): 123-131.
[7] 孟凡齐, 孙潇潇, 朱金善, 等. 基于双向A*-APF算法的船舶路径规划研究[J]. 大连海洋大学学报, 2024, 39(3): 506-515.
MENG F Q, SUN X X, ZHU J S, et al. Ship path planning based on bidirectional A*-APF algorithm[J]. Journal of Dalian Ocean University, 2024, 39(3): 506-515.
[8] 毛寿祺, 杨平, 高迪驹, 等. 基于细菌觅食-改进蚁群优化算法的水面无人船路径规划[J]. 控制工程, 2024, 31(4): 608-616.
MAO S Q, YANG P, GAO D J, et al. Path planning for unmanned surface vehicle based on bacterial foraging-improved ant colony optimization algorithm[J]. Control Engineering of China, 2024, 31(4): 608-616.
[9] 白灵, 赵珈玉, 鞠岩松. 人工智能在舰船航行数学建模中的应用[J]. 舰船科学技术, 2023, 45(8): 173-176.
BAI L, ZHAO J Y, JU Y S. Application of artificial intelligence in mathematical modeling of ship navigation[J]. Ship Science and Technology, 2023, 45(8): 173-176.
[10] 王鸿东, 易宏, 向金林, 等. 基于海事规则的中型无人艇避碰路径规划算法研究及应用[J]. 中国舰船研究, 2022, 17(5): 184-195+203.
WANG H D, YI H, XIANG J L, et al. Collision avoidance path planning algorithm research and application of medium-sized USV based on COLREGS[J]. Chinese Journal of Ship Research, 2022, 17(5): 184-195+203.