船舶运行环境复杂多变引起电磁耦合频率大幅提升,随之带来的集肤与邻近效应,使得漏感计算无法反映真实谐振回路中电流的变化情况,导致漏感校正效果不佳。因此,提出船舶电力电子变压器漏感自动校正方法。通过在船舶电力电子变压器电路中设置感应装定磁场耦合系统,检测初级线圈谐振回路中电流的变化情况,以此确定是否产生漏感。在产生漏感时,以微型逆变器控制模块为基础,基于单边校正网络设计双边校正网络。通过双边校正网络调整初级侧和次级侧的校正电容值,实现船舶电力电子变压器漏感自动校正。实验结果显示所提方法应用后的输出电流在30 s内达到稳定状态,电压幅值成功回升到2 V左右的正常水平,有助于确保船舶电力电子变压器稳定。
The complex and variable operating environment of ships causes a significant increase in electromagnetic coupling frequency, resulting in skin and proximity effects that make leakage inductance calculations unable to reflect the actual changes in current in the resonant circuit, leading to poor leakage inductance correction results. Therefore, an automatic correction method for leakage inductance of ship power electronic transformers is proposed. By setting up an induction device magnetic field coupling system in the ship's power electronic transformer circuit, the changes in current in the primary coil resonant circuit are detected to determine whether leakage inductance is generated. When generating leakage inductance, a bilateral correction network is designed based on a single-sided correction network using a micro inverter control module as the basis. By adjusting the correction capacitance values of the primary and secondary sides through a bilateral correction network, automatic correction of leakage inductance in ship power electronic transformers can be achieved. The experimental results show that the output current of the proposed method reaches a stable state within 30 s after application, and the voltage amplitude successfully recovers to a normal level of around 2 V, which helps to ensure the stability of ship power electronic transformers.
2025,47(16): 168-172 收稿日期:2025-4-21
DOI:10.3404/j.issn.1672-7649.2025.16.026
分类号:U665
作者简介:戴立庆(1987-),男,硕士,讲师,研究方向为电气设备故障诊断
参考文献:
[1] 薛敏涓, 曹爽, 肖杨婷, 等. 船舶电力系统闭环运行保护技术综述[J]. 船舶工程, 2024, 46(8): 93-100+137.
XUE M J, CAO S, XIAO Y T, et al. Review of closed-loop operation protection technology for ship power system[J]. Ship Engineering, 2024, 46(8): 93-100+137.
[2] 赵志刚, 张学增. LLC平面变压器绕组损耗与漏感改进有限元计算方法[J]. 电工技术学报, 2022, 37(24): 6204-6215.
ZHAO Z G, ZHANG X Z. Improved finite element method of winding loss and leakage inductance for planar transformer used in LLC converter[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6204-6215.
[3] 张鹏宁, 李伟, 李朋阳, 等. 纳米晶高频变压器优化设计与实验验证[J]. 高电压技术, 2024, 50(10): 4475-4486.
ZHANG P N, LI W, LI P Y, et al. Optimization design and experimental verification of nanocrystalline high-frequency transformer[J]. High Voltage Engineering, 2024, 50(10): 4475-4486.
[4] 王伟, 陈鹏宇, 刘宝泉, 等. 中频DVR补偿变压器投切电路与控制方法[J]. 电子器件, 2022, 45(6): 1370-1376.
WANG W, CHEN P Y, LIU B Q, et al. Switching circuit and control method of compensation transformer for intermediate frequency DVR[J]. Chinese Journal of Electron Devices, 2022, 45(6): 1370-1376.
[5] 孙泽, 陈息坤, 王佳军, 等. 反激变换器开关噪声抑制策略[J]. 电子技术应用, 2023, 49(5): 111-114.
SUN Z, CHEN X K, WANG J J, et al. Switching noise suppression strategy for flyback converter[J]. Application of Electronic Technique, 2023, 49(5): 111-114.
[6] 刘洋, 裴洲奇. 船舶电力电子变压器整流级新型直接功率自动控制[J]. 舰船科学技术, 2024, 46(10): 161-165.
LIU Y, PEI Z Q. New direct power automatic control for rectifier stage of marine power electronic transformer[J]. Ship Science and Technology, 2024, 46(10): 161-165.
[7] 范学鑫, 杨北超, 揭贵生, 等. 考虑漏感频变特性的三相立体卷铁心变压器建模及分析[J]. 电工技术学报, 2023, 38(1): 140-152.
FAN X X, YANG B C, JIE G S, et al. Modeling and analysis of 3d wound core transformer considering frequency-dependent characteristics of leakage inductance[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 140-152.
[8] 司冯淼, 王毅颖, 张远辉, 等. 基于单相电力电子变压器反馈的协调控制研究[J]. 计算机仿真, 2024, 41(12): 382-387.
SI F M, WANG Y Y, ZHANG Y H, et al. Research on coordinated control based on feedback of single-phase power electronic transformer[J]. Computer Simulation, 2024, 41(12): 382-387.