浮式生产储卸油装置(FPSO)生产模块的浮式吊装存在巨大挑战,因在作业过程中,典型的管状桁架结构容易发生过度变形。这项研究利用DNV GeniE软件建立了一个有限元模型,模拟了不同海况条件下风、波浪和海流载荷以及起吊瞬间冲击载荷对模块浮吊过程中的影响,并对生产模块结构加固前和加固后的情况进行对比分析。研究结果表明,在起吊作业海况下模块的最大Von Mises应力和变形量分别降低了12.70%和16.43%,在风暴自存海况这一极端海况下模块的最大Von Mises应力和变形量则分别降低了12.22%和6.37%。实验结果证明了加固方案的有效性和可靠性。
Floating lifting of production modules for Floating Production Storage and Offloading (FPSO) units presents significant challenges as typical tubular truss structures are prone to excessive deformation during operations. In this study, a finite element model was developed using DNV GeniE software to simulate the effects of wind, wave, and current loads as well as instantaneous impact loads on the module during the floating hoisting process, and a comparative analysis was performed between the pre- and post-reinforcement conditions of the production module structure. The results of the study show that the maximum stresses and deformations are significantly reduced, proving the effectiveness of the reinforcement strategy and emphasizing the safety and reliability of such operations. The successful implementation of this methodology opens up a promising path for offshore engineering practice and helps to optimize the installation of large offshore modules.
2025,47(17): 25-32 收稿日期:2025-3-28
DOI:10.3404/j.issn.1672-7649.2025.17.005
分类号:TU311.3
基金项目:广东省科技计划项目(2023B1212010012)
作者简介:严傲宇(2000-),男,硕士,研究方向为船舶与海洋工程
参考文献:
[1] 张永康, 余龙溦, 林超辉, 等. 基于Sesam仿真的原油转驳船主机基座强度校核[J]. 中国海洋平台, 2023, 38(5): 27-32.
ZHANG Y K, YU L C, LIN C H, et al. Strength calibration of main engine base of crude oil transfer barge based on Sesam simulation[J]. China Offshore Platform, 2023, 38(5): 27-32.
[2] 辛子豪, 何炎平, 曾敏, 等. SPMT运输FPSO上部模块动力学分析[J]. 中国海洋平台, 2024, 39(4): 75-78+98.
XIN Z H, HE Y P, ZENG M, et al. Dynamic analysis of upper module of SPMT transportation FPSO[J]. China Offshore Platform, 2024, 39(4): 75-78+98.
[3] PICARD L, BLANCHET P, DROLET B A. On-site handling: Automated connecting device for modular construction used as lifting apparatus[J]. Structures, 2024, 63106318.
[4] MOMENI B. In-place and lift analysis of an offshore module: comparative study[D]. Norway: University of Stavanger, 2015.
[5] LUNDQVIST A. Structural analysis for heavy lift removal of offshore module[D]. Norway: University of Stavanger, 2009.
[6] ALI I. Structural modelling of offshore module for loadout, transportation and installation[D]. Norway: University of Stavanger, 2014.
[7] HWANG J, ROH M, LEE K. Detailed design and construction of the hull of a floating, production, storage and off-loading (FPSO) unit[J]. Ships and Offshore Structures, 2010, 5(2): 93-104.
[8] 黄涣青, 石科良, 钟星海. FPSO生活模块总段浮式吊装有限元分析[J]. 广东造船, 2017, 36(2): 56-59.
[9] YANG Y T, KWON J S. Development of diagonal tensioning system for lifting FPSO topside module with eccentric center of gravity[C]//14th (2004) International Offshore and Polar Engineering Conference (ISOPE 2004). 2004: 696-703.
[10] 韩放, 余建星, 陈海成, 等. FPSO模块吊装风险分析方法及应用研究[J]. 中国安全科学学报, 2019, 29(12): 123-128.
[11] 李晓康, 徐斌荣, 肖虎, 等. 基于AWS D1.1标准焊接工艺评定解析[J]. 机械工程师, 2023(7): 89-91.
[12] 成昊, 王丽铮. 风电安装船桁架式桩腿结构分析与优化[J]. 舰船科学技术, 2023, 45(4): 80-84.
CHENG H, WANG L Z. Structural analysis and optimization of trussed pile legs of wind power installation vessels[J]. Ship Science and Technology, 2023, 45(4): 80-84.