将带阻尼黑洞结构嵌入舱壁面,构建出基于黑洞聚能的海洋平台新型声振抑制方法。首先研究了弯曲波在黑洞结构中的反射特性,基于几何声学原理分析了截断位置、阻尼厚度、阻尼弹性模量、激励频率对聚能效果的影响规律,研究表明近80%的结构动能被俘获在本文黑洞结构中心0.16 m范围内,且扩大黑洞中心均匀厚度区域面积对提升聚能效果具有积极作用。为解决工程计算内存过载问题,提出并验证了带阻尼黑洞结构的工程2D化计算方法,进而基于模态分析结合拓扑优化方法确定了黑洞结构嵌入最佳位置。研究表明,该声振抑制方法可降低舱室噪声约40 dB、结构噪声约45 dB,相比全舱壁敷设阻尼约有7、15 dB的提升,并可满足GJB4.8颠振二级寿命要求。
A novel acoustic and vibration suppression method for offshore platform based on black hole gathering energy was constructed by embedding a damped black hole structure into the bulkhead surface. Firstly, the reflection characteristics of curved wave in the black hole structure are studied. The influence laws of truncation position, damping thickness, damping elastic mode and excitation frequency on the energy gathering effect are analyzed based on the principle of geometric. The research shows that nearly 80% of the structural kinetic energy is captured within 0.16m of the black hole structure center in this paper, and expanding the average thickness area of the center of the black hole will significantly improve the energy gathering effect. Furthermore, the 2D engineering calculation method of damped black hole structure is proposed and verified, which solves the problem of engineering computing memory overload. Finally, the optimal location of black hole structure embedding is determined based on model analysis and topology optimization. The results shows that the acoustic and vibration suppression method can reduce cabin noise by about 40 dB and structure noise about 45 dB,which is about 7 dB and 7 dB higher the damping of full bulkhead installation, and it can meet the secondary flutter life requirements of GJB4.8.
2025,47(17): 33-38 收稿日期:2024-11-2
DOI:10.3404/j.issn.1672-7649.2025.17.006
分类号:TB535
作者简介:闫森森(1992-),男,硕士,工程师,研究方向为振动噪声控制
参考文献:
[1] CREMER L, HECKL M, UNGAR E E. Structure-borne Sound [M]. Second Edition. Berlin:Springer-Verlag, 1988.
[2] 熊庆辉. 复合材料平台型基座振动传递分析及优化[D]. 武汉: 华中科技大学, 2021.
[3] 王语嫣, 杨德庆. 阻振质量-刚度-阻尼材料配置同步优化的基座声学设计[J]. 振动与冲击, 2021, 40(6): 257-264.
WANG Y Y, YANG D Q. Vibration mass-stiffness-damping material configuration synchronously optimized base acoustic design[J]. Journal of Vibration and Shock, 2021, 40(6): 257-264.
[4] HUANG W, JI H, QIU J, et al. Analysis of ray trajectories of flexural waves propagating over generalized acoustic black hole indentations[J]. Journal of Sound and Vibration, 2018, 417: 216-226.
[5] HONG L, WANG X D, et al. Noise reduction inside a cavity coupled to a flexible plate with embedded 2-D acoustic black holes[J]. Journal of Sound and Vibration, 2022, 455: 324-338.
[6] 刘波涛, 张海龙, 王轲, 等. 声学黑洞轻质超结构的低频宽带高效隔声机理及实验研究[J]. 西安交通大学学报, 2019, 53(10): 128-134.
LIU B T, ZHANG H L, WANG K, et al. Mechanism and experimental study of low frequency wideband efficient sound insulation of acoustic black hole light superstructure[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 128-134.
[7] 王蔚浩, 林永水, 刘昊宇, 等. 基于螺旋声学黑洞的环肋圆柱壳减振技术仿真分析[J/OL]. 中国舰船研究, 2024: 1-10.
WEI Y H, LIN Y S, LIU H Y, et al. Simulation and analysis of vibration reduction technology of annular ribbed cylindrical shell based on spiral acoustic black hole [J]. Chinese Journal of Ship Research, 2024, 1-10.
[8] 温华兵, 黄惠文, 史自强, 等. 声学黑洞加筋板结构的声振特性分析[J]. 船舶力学, 2024, 28(3): 42-49.
WEN H B, HUANG H W, SHI Z Q, et al. Analysis of acoustic and vibration characteristics of black hole reinforced panel structure[J]. Journal of Ship mechanics, 2024, 28(3): 42-49.
[9] 王禹. 基于声学黑洞原理的船舶低噪声浮筏研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.