圆筒型FPSO具有水线面大、垂荡方向回复刚度大、初稳性高等优点。相比于传统船型FPSO,其摇摆运动的固有频率明显低于波浪的谱峰频率,因此二阶低频波浪力对摇摆运动有明显的影响,摇摆运动在重力作用的影响下会对水平加速度产生影响,考虑重力分量的合成加速度与不考虑重力分量的水平加速度差异较大。加速度是结构设计中重要的组成部分,合理地评估加速度可指导结构优化设计,达到节省钢材量、提升服役安全和经济性的效果。本文针对南海百年一遇的环境条件,研究了低频波浪力对FPSO重心加速度的影响,并采用滤波手段,对不同波浪力成分产生的水平加速度动力学响应进行定量分析,并与模型试验结果进行对比。结果显示,低频波浪力对水平加速度响应有较大的影响,重力分量是圆筒型FPSO水平加速度增大的主要影响参数。
Cylindrical FPSO has the advantages of large waterline surface, large recovery stiffness in heave direction, and high initial stability. Compared with the traditional ship shape FPSO, the natural frequency of its rotational motion is significantly lower than the spectral peak frequency of the wave. The second-order wave drift force has a significant impact on the rotational motion. Considering the factor of gravity component, horizontal combined acceleration will also be affected. Acceleration is an important part of structural design. A reasonable evaluation of acceleration can guide the structural optimization design, so as to achieve the effect of saving steel, improving service safety and economic performance. In this paper, based on the 100-year return period environmental conditions in the South China Sea, the effects of low-frequency wave forces on the horizontal acceleration of the FPSO center of gravity are studied. Further, the dynamic responses of horizontal acceleration generated by different wave force components are quantitatively analyzed by using the filer tool and compared with the model test results. The results show that the low-frequency wave force has a great influence on the horizontal acceleration response, and the gravity component is the main factor affecting the horizontal acceleration increase of the cylindrical FPSO.
2025,47(17): 39-44 收稿日期:2024-9-3
DOI:10.3404/j.issn.1672-7649.2025.17.007
分类号:P751
作者简介:付升雷(1994-),男,硕士,工程师,研究方向为深水浮式结构物设计
参考文献:
[1] 彭小佳, 张广磊, 李俊汲, 等. 深海圆筒型FPSO总体设计[J]. 船海工程, 2024, 53(3): 90-94.
PENG X J, ZHANG G L, LI J J, et al. General design of the cylindrical FPSO in deep water[J]. Ship & Ocean Engineering, 2024, 53(3): 90-94.
[2] 李达, 白雪平, 张婧文, 等. 圆筒型FPSO总体设计方案与关键技术[J]. 中国海上油气. 2023, 35(2): 184-194.
LI D, BAI X P, ZHANG J W, et al Overall design scheme and key technologies of cylindrical FPSO: Taking “HYSY122” as an example[J]. China Offshore Oil and Gas, 2023, 35(2): 184-194.
[3] 李刚, 李达, 王朝阳, 等. 圆筒型FPSO 在波浪中运动响应特性研究[J]. 船舶. 2022, 33(2): 22-28.
LI G, LI D, WANG Z Y, et al. Research on motion response characteristics of cylindrical FPSO in waves[J]. Ship&Boat, 2022, 33(2): 22-28.
[4] 刘波. 圆筒形FWPSO在中国南海环境条件的适应性分析[J]. 中国海上油气, 2019, 31(4): 154-158.
LIU B. Adaptability analysis of cylindrical FWPSO under environmental conditions in the South China Sea[J]. China Offshore Oil and Gas, 2019, 31(4): 154-158.
[5] 黄佳, 王忠畅, 赵战华. 圆筒形FWPSO水动力性能模型试验研究[J]. 海洋工程, 2017, 35(6): 119-124.
HUANG J, WANG Z C, ZHAO Z H. Model experimental research on hydrodynamic performance of cylindrical floating workover production storage offloading(FWPSO)[J]. The Ocean Engineering. 2017, 35(6): 119-124.
[6] 童波. 圆筒形FPSO尺度规划和运动性能研究[J]. 海洋工程, 2017, 35(4): 94-99.
TONG Bo. Dimension design and motion research for cylinder FPSO[J]. The Ocean Engineering, 2017, 35(4): 94-99.
[7] MASAKATSU SAITO, KATSUYA MAEDA. An experimental investigation of cylindrical floater vim in current and waves[C]//OMAE2014-23702. San Francisco, California, USA. 2014.
[8] KHOR W H, ADIBAH F M Y, et al. Numerical simulation on motion of seven cylindrical fpso in different loading condition[J]. Journal of Marine Science, Engineering & Technology. 2019(2): 27-40.
[9] 李晨, 李欣, 田新亮, 等. 不同阻尼板形式对圆筒型 FPSO 平台运动性能的影响[J]. 船舶工程, 2023, 45(1): 151-159.
LI C, LI X, TIAN X L, et al. Motion characteristics of cylindrical fpso platform affected by different damping plate forms[J]. Ship Engineering, 2023, 45(1): 151-159.
[10] 白杰, 李焱, 曲志森, 等. 新型圆筒型FPSO垂荡抑制结构优化设计[J]. 海洋工程, 2020, 38(1): 20-29.
BAI J, LI D, QU Z S, et al. Optimization design of heave suppression structure for new cylindrical FPSO[J]. The Ocean Engineering, 2020, 38(1): 20-29.
[11] 陈维, 李清, 栗铭鑫, 等. 新型圆筒型 FPSO 运动抑制结构的优化设计[J]. 船舶工程, 2020, 38(1): 20-29.
CHEN W, LI Q, LI M X, et al. Optimal design of new cylindrical fpso motion Suppression structure[J]. Ship Engineering, 2020, 38(1): 20-29.
[12] 郝未南, 赵伟文, 万德成, 等. 不同垂荡抑制结构对圆筒型FPSO阻尼和运动性能的影响研究[J]. 水动力学研究与进展, 2020, 37(3): 393-400.
HAO W N, ZHAO W W, WAN D C, et al. Damping performance of anti-motion structures on cylindrical FPSO[J]. Chinese Journal of Hydrodynamics, 2020, 37(3): 393-400.
[13] 童波, 季欣洁, 王浩, 等. 圆筒型FPSO阻尼结构的阻尼性能研究[J]. 海洋工程, 2018, 36(5): 22-29.
TONG B, JI X J, WANG H, et al. Study on damping performances of damping structures of cylindrical FPSO[J]. The Ocean Engineering, 2018, 36(5): 22-29.
[14] 易丛, 于博骞, 卢文月, 等. 波流耦合作用对圆筒型FPSO运动响应的影响[J]. 中国海洋平台, 2023, 38(5): 42-48+59.
YI C, YU B Q, LU W Y, et al. Influence of Wave-Current Intereaction on Motion Response of Cylinder FPSO[J]. China Offshore Platform, 2023, 38(5): 42-48+59.
[15] DNVGL-OS-E301 Position Mooring[S]. 2020.