根据西非海运某油气田实际海况、开采周期、生产率,以天然气日产量不低于1400万立方米/天、原油日处理量约5.5万桶/天、储油量110万桶为FPSO设计目标,针对超大天然气生产率的特点,根据相平衡理论,设计研究了四级减压油气水分离与稳定以及四级闪蒸气压缩处理、低温分离脱水等关键工艺,并采用乙二醇作为井口及低温分离天然气水合物抑制剂,设计实现了最大乙二醇再生能力高达1750桶。基于安全、重心平衡及一体化设计理念,简化了处理流程,确定了FPSO上部模块布置方案。鉴于该FPSO拥有目前全球最大的天然气处理量,并优化设计乙二醇辅助低温分离进行天然气脱水,避免了关键设备内水合物的形成与堵塞,可为未来国内海上天然气的开发、处理、外输提供参考。
Based on the actual sea conditions, production cycle, and productivity of an oil and gas field in the offshore waters of West Africa, the FPSO was designed with the targets of a daily natural gas production of no less than 14 million cubic meters, a daily crude oil processing capacity of approximately 55,000 barrels, and a storage capacity of 1.1 million barrels. In view of the characteristics of super-large natural gas productivity, according to the phase balance theory, the key natural gas treatment processes of the FPSO, such as four-stage decompression, oil-gas water separation and stabilization, four-stage flash vapor compression treatment, and low-temperature separation and dehydration, were designed and studied. Ethylene glycol was used as the wellhead and low temperature separation of natural gas hydrate inhibitors. The process of ethylene glycol regeneration and produced water treatment was studied according to the treatment capacity and water production rate, and the maximum ethylene glycol regeneration capacity was designed to reach 1750 barrels. Based on the design concept of safety, center of gravity balance and integrated design, the process is simplified and the layout scheme of upper module of FPSO is determined. In view of the fact that the FPSO has the largest natural gas processing capacity in the world at present, and optimize the design of ethylene glycol assisted low temperature separation for natural gas dehydration, to avoid the formation of hydrate in key equipment and blocking, it can provide a reference for the future development, processing and export of domestic offshore natural gas.
2025,47(17): 62-67 收稿日期:2025-3-27
DOI:10.3404/j.issn.1672-7649.2025.17.011
分类号:TE53
基金项目:国家工业和信息化部高技术船舶项目(CJ09N20)
作者简介:刘贤权(1982-),男,硕士,高级工程师,研究方向为海洋工程装备建造、经营管理及相关核心配套设备
参考文献:
[1] 张宗峰, 陈同彦, 周家兴, 等. 海洋导管架平台弃置方案与技术方法研究进展[J]. 海洋学研究, 2024, 42(2): 113-124.
ZHANG Z F, CHEN T Y, ZHOU J X, et al. Research progress on decommission schemes and technical methods for offshore jacket platforms[J]. Acta Oceanologica Sinica, 2024, 42(2): 113-124.
[2] 聂家强. 浅析导管架平台受损结构安全评估[J]. 中国设备工程, 2025(4): 79-81.
NIE J Q. Analysis of safety assessment for damaged structures of jacket platforms[J]. China Equipment Engineering, 2025(4): 79-81.
[3] 《海洋工程装备制造业持续健康发展行动计划(2017–2020年)》发布[J]. 船舶标准化与质量, 2018(1): 20.
Action Plan for Sustainable and Healthy Development of Marine Engineering Equipment Manufacturing Industry (2017-2020)[J].Shipbuilding Standardization & Quality, 2018(1): 20.
[4] ZHANG G, QU H, CHEN G, et al. Giant discoveries of oil and gas fields in global deepwaters in the past 40 years and the prospect of exploration[J]. Journal of Natural Gas Geoscience, 油气田地面工程, 2019, 4(1): 1-28.
[5] 张洪政, 罗佳琪, 宋扬, 等. 高酸高压油气FPSO处理工艺及关键设备设计[J]. 山东化工, 2023, 52(24): 181-186.
ZHANG H Z, LUO J Q, SONG Y, et al. High acid high pressure oil and gas FPSO processing technology and key equipment design[J]. Shandong Chemical Industry, 2023, 52(24): 181-186.
[6] 赵世发, 窦培林, 袁洪涛, 等. 圆筒型FPSO减动装置选型设计及分析[J]. 舰船科学技术, 2024, 46(6): 112-119.
ZHAO S F, DOU P L, YUAN H T, et al. Type selection design and analysis of damping device for cylindrical FPSO[J]. Ship Science and Technology, 2024, 46(6): 112-119.
[7] 董学明, 周长所. 澳大利亚布劳斯深水气田浮式LNG开发技术[J]. 石化技术, 2015, 22(10): 7+22.
DONG X M, ZHOU C S. Australia browse gas field development with floating LNG[J]. Petrochemical Industry Technology, 2015, 22(10): 7+22.
[8] 刘霄, 刘唯佳, 张倩, 等. 天然气脱水技术优选[J]. 油气田地面工程, 2017, 36(10): 31-35.
LIU X, LIU W J, ZHANG Q, et al. Optimization of the dehydration technology for natural gas[J]. Oil-Gasfield Surface Engineering, 2017, 36(10): 31-35.
[9] 范进争. 天然气脱水脱烃流程模拟与优化[J]. 重庆科技学院学报(自然科学版), 2023, 25(4): 26-31.
FAN J Z. Simulation and optimization of natural gas dehydration and dehydrocarbon process[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2023, 25(4): 26-31.
[10] 张陆军, 李原, 王文涛, 等. 乙二醇再生与回收的再生工艺参数优化[J]. 云南化工, 2020, 47(7): 114-116.
ZHANG L J, LI Y, WANG W T, et al. Optimization of regeneration process parameters for ethylene glycol regeneration and recoverys[J]. Yunnan Chemical Technology, 2020, 47(7): 114-116.
[11] 杨宇. 液态烃脱水安装闪蒸罐可行性分析研究[J]. 科技与企业, 2013(10): 387.
YANG Y. Feasibility analysis of installing flash tank for liquid hydrocarbon dehydration[J]. Science-Technology Enterprise, 2013(10): 387.