针对自航式近海风电设备运输船在不同环境条件下航行的安全问题,基于某海上风电场导管架的运输与安装工程为实例,借助MOSES软件构建相应的模型,对导管架的运输过程展开频域运动响应分析,探究不同环境参数,如浪向、航行速度以及水深等对运输过程运动性能的影响规律。研究发现,横摇在横浪状态下响应峰值显著增大,应避免横浪作业。航速和水深对运动响应有影响,尤其在低频区。研究结果为海上风电导管架的安全运输提供了重要参考。
In response to the safety issues of self-propelled offshore wind power equipment transport ships sailing under different environmental conditions, based on the transportation and installation engineering example of a certain offshore wind farm's duct frame, a corresponding model was constructed using MOSES software to analyze the frequency domain motion response of the duct frame during transportation, and to explore the influence of different environmental parameters such as wave direction, sailing speed, and water depth on the motion performance of the transportation process. Research has found that the peak response of rolling significantly increases in the state of transverse waves, and transverse wave operations should be avoided. The speed and depth of water have an impact on the motion response, especially in the low-frequency range. The research results provide important references for the safe transportation of offshore wind duct racks.
2025,47(17): 68-74 收稿日期:2024-11-26
DOI:10.3404/j.issn.1672-7649.2025.17.012
分类号:U661.3
基金项目:工信部高技术船舶专项资助项目(CBG5N21-3-5)
作者简介:贺玉海(1976-),男,教授,博士,研究方向为船舶与海洋工程水动力性能
参考文献:
[1] 万远琛, 王凯, 初岳峰. 海上风电运维的技术现状和发展综述[J]. 船舶工程, 2020, 42(12): 10-15.
WAN Y C, WANG K, CHU Y F. Overview of the technical status and development of offshore wind power operation and maintenance[J] Ship Engineering, 2020, 42 (12): 10-15.
[2] 刘桢, 俞炅旻, 黄德财, 等. 海上风电发展研究[J]. 船舶工程, 2020, 42(8): 11-16.
LIU Z, YU J M, HUANG D C, et al. Ship Engineering, 2020, 42 (8): 11-16.
[3] 盛振邦. 船舶原理(第二版)[M]. 上海: 上海交通大学出版社, 2017.
[4] 吴梵. 船舶结构力学[M]. 北京: 国防工业出版社, 2010.
[5] 傅圣航, 张伟, 张浦阳. 大型海上风电结构物运输过程运动响应分析[J]. 太阳能学报, 2023, 44(7): 496-503.
FU S H, ZHANG W, ZHANG P Y. Motion response analysis of large-scale offshore wind power structures during transportation[J]. Journal of Solar Energy, 2023, 44 (7): 496-503.
[6] 张智博, 卢浩, 苑桂博, 等. 海上风机稳桩施工平台吊装过程中的多船水动力干扰特性与动力响应分析[J]. 海洋工程, 2022, 40(3): 40-51.
ZHANG Z B, LU H, YUAN G B, et al. Multi ship hydrodynamic interference characteristics and dynamic response analysis during the hoisting process of offshore wind turbine stable pile construction platform[J]. Ocean Engineering, 2022, 40 (3): 40-51.
[7] 闵巧玲, 贾沼霖, 逯鹏, 等. 新型工艺下的海上风电导管架基础水动力数值仿真与风险分析[J]. 太阳能学报, 2022, 43(4): 366-374.
MIN Q L, JIA B L, LU P, et al. Numerical simulation and risk analysis of hydrodynamic force of offshore wind duct support foundation under new technology[J]. Journal of Solar Energy, 2022, 43 (4): 366-374.
[8] 王凡. 新型风机运输安装船的水动力特性及安装动力响应分析[D]. 武汉: 武汉理工大学, 2021.
[9] 陈明胜, 王凡, 朱凌, 等. 基于斜推式风机安装船的风机整机安装方法研究[J]. 中国造船, 2019, 60(4): 115-125.
CHEN M S, WANG F, ZHU L, et al. Research on the installation method of wind turbine based on inclined thrust wind turbine installation ship[J]. China Shipbuilding Industry, 2019, 60 (4): 115-125.
[10] BLENTLY. Reference manual for MOSES[EB/OL]. http://www.bentley.com/service ticket manager,2019.
[11] 王朋超, 谭睿, 何燕. 深海工作船系泊系统运动响应分析[J]. 青岛科技大学学报(自然科学版), 2023, 44(1): 111-118.
WANG P C, TAN R, HE Y. Motion response analysis of deep-sea working vessel's mooring system[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2023, 44(1): 111-118.
[12] 薛安宁. 海上风机整体漂浮状态运输及安装数值模拟研究[D]. 大连: 大连理工大学, 2022.
[13] 刘潇. 海上风电三筒导管架基础及整机浮运研究[D]. 天津: 天津大学, 2021.
[14] 刘志恒, 袁梦, 付绍洪. 吸力筒式导管架浮卸下潜稳性分析[J]. 船海工程, 2022, 51(4): 100-104.
LIU Z H, YUAN M, FU S H. Analysis of submersible stability of suction tube pipe rack during floating unloading[J]. Ship and Sea Engineering, 2022, 51 (4): 100-104.
[15] 冀楠, 黄浩东, 罗意, 等. 驶经丁坝船舶水动力特性数值研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(7): 146-154.
JI N, HUANG H D, LUO Y, et al. Numerical study on hydrodynamic characteristics of ships passing by groins[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2023, 42(7): 146-154.