在海上风电产业蓬勃发展的背景下,半潜式浮式基础的结构优化与动力特性研究意义重大。本文对三浮筒型式的半潜式平台开展了结构优化设计,基于模型试验和数值模拟分析了优化平台的优点和运动性能。结果表明,相比于原型浮式平台,优化方案有效降低了纵摇角、纵荡和垂荡幅值(最大降低46%,26.2%和46.0%),使得迎浪侧系泊力减小;不同波浪条件下,优化平台运动平衡位置保持稳定,但运动响应幅值提高明显,但在极端波浪下仍能有效控制结构的运动响应,保障风机稳定运行;风速显著影响平台纵荡和纵摇,而海流主要影响平台纵荡和迎流侧系泊力。研究结果以期为优化浮式风机平台设计和提高其在极端海况下的安全性提供科学依据。
Against the backdrop of the booming offshore wind turbine industry, the research on the structural optimization and dynamic characteristics of semi-submersible floating foundations is of great significance. This paper carried out structural optimization design of a three-buoy type semi-submersible platform, and analyzed the advantages and motion performance of the optimized platform based on model tests and numerical simulations. The results show that compared with the prototype floating platform, the optimization scheme effectively reduces the pitch angle, surge and heave amplitude (maximum reduction of 46%, 26.2% and 46.0%), which reduces the mooring force on the wave-facing side. Under different wave cases, the kinematic equilibrium position of the optimized platform remains stable, but the motion response amplitude increases significantly. However, under extreme waves, the kinematic response of the structure can still be effectively controlled to ensure stable operation of the wind turbine. Wind speed significantly affects platform surge and pitch, while sea currents mainly affect platform surge and upstream side mooring force. The research results are expected to provide scientific basis for optimizing the design of floating wind turbine platforms and improving their safety in extreme sea cases.
2025,47(17): 75-82 收稿日期:2025-1-12
DOI:10.3404/j.issn.1672-7649.2025.17.013
分类号:U661.32
基金项目:中国电力工程顾问集团有限公司科技项目(DG2-T02-2023)
作者简介:樊涛(1980-),男,博士,正高级工程师,研究方向为海上风电基础结构
参考文献:
[1] ISHIHARA T, LIU Y. Dynamic response analysis of a semi-submersible floating wind turbine in combined wave and current cases using advanced hydrodynamic models[J]. Energies, 2020, 13(21): 5820.
[2] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
WEN B R, TIAN X L, LI Z W, et al. Coupling dynamics of floating wind turbines: History, progress and challenges[J]. Advances in Mechanics, 2022, 52(4): 731-808.
[3] 戴鹏, 黎鹏飞, 绳结竑, 等. 大兆瓦级新型半潜式风机基础稳性对比分析[J]. 船舶工程, 2024, 46(S1): 82-86+140.
DAI P, LI P F, SHENG J H, et al. Comparative analysis of the stability of large megawatt-scale novel semi-submersible wind turbine foundations[J]. Ship Engineering, 2024, 46(S1): 82-86+140.
[4] 胡缤纷. 浮式风机平台的系泊疲劳寿命计算与浮筒优化设计[D]. 长沙: 湖南大学, 2018.
[5] 宋兆波. 大型漂浮式海上风机平台结构设计和动力特性研究[D]. 大连: 大连理工大学, 2022.
[6] 朱晓洋. 海上浮式风机在极端海况下的响应和优化研究[D]. 广州: 华南理工大学, 2020.
[7] 丁红岩, 韩彦青, 张浦阳, 等. 全潜式浮式风机基础在不同风况下的动力特性研究[J]. 振动与冲击, 2017, 36(6): 201-206+228.
DING H Y, HAN Y Q, ZHANG P Y, et al. Dynamic analysis of the submersible foundation for floating wind turbine in different wind conditions[J]. Journal of Vibration and Shock, 2017, 36(6): 201-206+228.
[8] HAN Y Q, LE C H, DING H Y, et al. Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines[J]. Ocean Engineering, 2017, 129: 68-82.
[9] LE C H, REN J Y, WANG K, et al. Towing performance of the submerged floating offshore wind turbine under different wave conditions[J]. Journal of Marine Science and Engineering, 2021, 9(6): 633.
[10] FARAGGIANA E, SIRIGU M, GHIGO A, et al. An efficient optimisation tool for floating offshore wind support structures[J]. Energy Reports, 2022, 8: 9104-9118.
[11] WANG B, GAO X, LI Y, et al. Dynamic response analysis of a semi-submersible floating wind turbine based on different coupling methods[J]. Ocean Engineering, 2024, 297: 116948.
[12] BAI H, XU K, ZHANG M, et al. Theoretical and experimental study of the high-frequency nonlinear dynamic response of a 10 MW semi-submersible floating offshore wind turbine[J]. Renewable Energy, 2024, 231: 120952.
[13] 曹淑刚, 程友良, 范晓旭. 考虑黏性效应的半潜浮式风力机动力特性研究[J]. 太阳能学报, 2023, 44(2): 153-159.
CAO S G, CHENG Y L, FAN X X. Research on dynamic characteristics of semi-submersible floating wind turbine considering viscous effect[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 153-159.
[14] 赵战华, 范亚丽, 匡晓峰, 等. 新型半潜式浮式风机动力特性试验研究[J]. 振动与冲击, 2022, 41(20): 252-257.
ZHAO Z H, FAN Y L, KUANG X F, et al. Experimental study on dynamic characteristic of a new semi-submersible floating offshore wind turbine[J]. Journal of Vibration and Shock, 2022, 41(20): 252-257.
[15] YU Z, AMDAHL J, RYPESTøL M, et al. Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads[J]. Renewable Energy, 2022, 184: 677-699.
[16] DNV. SESAM user manual Sima[R]. 2011.
[17] DNV. DNV-RP-C205 Environmental Cases and Environmental Loads[S]. Norway: Det Norske Veritas: 2010.