为探讨风机塔筒尾涡场及流体力特性,基于CFD方法对6种典型风速(U=10、12、14、16、18、20 m/s)的三维塔筒尾涡场特性进行了数值仿真分析,对比不同风速下的塔筒尾涡场及流体力。结果表明,在塔筒自由端面上产生的漩涡长度约等于自由端面直径,在纵切面脱落的漩涡呈现倾斜状态,自由端面后缘产生的梢涡向下旋转并延伸。随着风速增加,升阻力周期减小,各风速下斯特劳哈尔数均在0.31左右。本文可为风机塔筒风致振动抑制技术提供基础数据支撑。
In order to explore the characteristics of tower vortex field and fluid force of wind turbine tower, numerical simulation based on CFD(Computational Fluid Dynamics) method is carried out to analyze the characteristics of three-dimensional tower vortex field for six typical wind speeds (U=10, 12, 14, 16, 18, 20 m/s), and to compare the tower vortex field and the fluid force in the tower under different wind speeds. The results show that the length of the vortex generated on the free end face of the tower is about equal to the diameter of the free end face, the vortex shedding in the longitudinal section shows an inclined state, and the tip vortex generated at the trailing edge of the free end face rotates downward and extends. With the increase of wind speed, the uplift resistance period decreases, and the Strauhal number is around 0.31 at all wind speeds. This study can provide basic data support for the wind-induced vibration suppression technology of wind turbine tower.
2025,47(17): 83-88 收稿日期:2024-10-25
DOI:10.3404/j.issn.1672-7649.2025.17.014
分类号:P751
基金项目:国家自然科学基金资助项目(52201334)
作者简介:张文耀(1987-),男,硕士,高级工程师,研究方向为海上浮式风机安装与运维
参考文献:
[1] 尹艳杰. 风力发电机塔架风荷载识别和风致疲劳的研究[D]. 包头: 内蒙古科技大学, 2015.
[2] 闫梁. 风力发电机塔架结构风压数值模拟研究[D]. 包头: 内蒙古科技大学, 2014.
[3] 刘鹏. 风电场塔筒尾流特性研究[D]. 成都: 西华大学, 2019.
[4] WANG J , FAN D , LIN K. A review on flow-induced vibration of offshore circular cylinders [J]. Journal of Hydrodynamics, 2020: 1-26.
[5] MIN L, YU W , GANG Q , et al. Investigation on the vortex-induced vibration active control of the riser in the “lock-in” region based on adaptive fuzzy sliding mode theory [J]. Ocean Engineering, 2021, 238.
[6] 李骏, 李威. 基于SST k-ω湍流模型的二维圆柱涡激振动数值仿真计算[J]. 舰船科学技术, 2015, 37(2): 30-34.
LI J, LI W. Numerical simulation of vortex-induced vibration of a two-dimensional circular cylinder based on the SST k-ω turbulent model[J]. Ship Science and Technology, 2015, 37(2): 30-34.
[7] KHALAK A, WILIAMSONCHK. Dynamics of a hydroelastic cylinder with very low mass and damping[J]Journal of fluids and structures, 1996, 10(5): 455-472.
[8] KHALAK A, WILIAMSONCHK. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of fluids and structures, 1997, 11(8): 973-982.
[9] RAHMANIAN M , CHENG L , ZHAO M , et al. Vortex induced vibration and vortex shedding characteristics of two side-by-side circular cylinders of different diameters in close proximity in steady flow [J]. Journal of Fluids and Structures, 2014, 48: 260–279.
[10] DANESHVAR S, MORTON C. On the vortex-induced vibration of a low mass ratio circular cylinder near a planar boundary [J]. Ocean Engineering, 2020, 201: 107109-107109.
[11] WILLIAMSON C, JAUVTIS N. A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion [J]. European Journal of Mechanics / B Fluids, 2003, 23 (1): 107-114.
[12] SUMNER D. Flow above the free end of a surface-mounted finite-height circular cylinder: A review [J]. Journal of Fluids and Structures, 2013, 43: 41-63.
[13] PARK C, LEE S. Effects of free-end corner shape on flow structure around a finite cylinder [J]. Journal of Fluids and Structures, 2003, 19(2): 141-158.
[14] CHEN W, JI C, ALAM MD et al. Three-dimensional flow past a circular cylinder in proximity to a stationary wall[J]. Ocean Engineering, 2022, 247: 110783.
[15] 陈洁, 虞培祥, 欧阳华. 三维不等直径串列圆柱绕流的双涡脱落流态频率特征研究[J]. 应用力学学报, 2022, 39(2): 386-393.
[16] 谭志荣, 熊劢, 王洋, 等. 高雷诺数下串列三圆柱绕流的大涡模拟[J]. 水运工程, 2022(12): 25-33.
[17] ZHAO M, KAJA K, XIANG Y, et al. Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow[J]. Ocean Engineering, 2013, 7383-7395.
[18] 赵桂欣, 桂洪斌, 王晓聪. 有限长波浪形圆柱绕流数值模拟[J]. 哈尔滨工业大学学报, 2021, 53(6): 163-170.
[19] 王晓聪, 桂洪斌, 刘洋. 三维有限长圆柱绕流数值模拟[J]. 中国舰船研究, 2018, 13(2): 27-34.
[20] 高敏. 亚临界区风场中三维圆柱绕流的数值模拟研究[D]. 大连: 大连理工大学, 2018.