随着对风能作为化石燃料可持续替代品的依赖日益增加,海上浮式风机备受关注。本研究针对5 MW浮式风机系统,通过整合叶素动量理论与多体动力学方法构建了高精度计算模型,系统性探讨了纵摇运动对风机推力特性的耦合影响机制。通过开展数值仿真与缩比风洞实验的对比验证研究,揭示了固定式风机推力特性与风速的非线性关系:叶轮平均推力在额定风速11.4 m/s时达到峰值,其后呈现衰减趋势。此外,研究发现平台纵摇运动不仅使平均推力产生动态偏移,更会引发显著的推力波动。该研究为海上浮式风机系统的耦合动力学建模提供了关键数据支撑,对于突破平台运动-气动载荷耦合作用的技术瓶颈,指导漂浮式风电平台的结构优化设计具有重要工程价值。
With the increasing dependence on wind energy as a sustainable alternative to fossil fuels, offshore floating wind turbines have received significant attention. This study investigates the 5 MW floating wind turbine system by developing a high-fidelity computational model integrating Blade Element Momentum (BEM) theory with multi-body dynamics methodology, systematically exploring the coupling influence mechanisms of pitch motion on rotor thrust characteristics. Through comparative validation studies combining numerical simulations and scaled wind tunnel experiments, the research revealed the nonlinear relationship between thrust characteristics and wind speed in fixed turbines: the mean rotor thrust reaches its peak at the rated wind speed of 11.4 m/s before exhibiting a decay trend. Furthermore, platform pitch motion was found to not only induce dynamic deviations in mean thrust but also trigger substantial thrust fluctuations, with amplitude reaching 1.8 times that of static conditions. The findings provide critical data support for coupled dynamic modeling of offshore floating wind turbine systems, offering essential insights to break through the technical bottleneck of platform motion-aerodynamic load coupling effects, which holds significant engineering value for guiding structural optimization design of floating wind turbine platforms.
2025,47(17): 89-95 收稿日期:2025-2-25
DOI:10.3404/j.issn.1672-7649.2025.17.015
分类号:U663
基金项目:上海勘测设计研究院有限公司科研项目(2023FD(81)-002,2023FD(82)-001);船舶CAE研发应用项目
作者简介:林琳(1988-),女,博士,高级工程师,研究方向为海上风电及海洋能开发
参考文献:
[1] COUNCIL G W E. Global Wind Report 2024[J]. Global wind energy council, 2024.
[2] MAALI AMIRI M, SHADMAN M, ESTEFEN S F. A review of numerical and physical methods for analyzing the coupled hy-dro–aero–structural dynamics of floating wind turbine systems[J]. Journal of Marine Science and Engineering, 2024, 12(3): 392.
[3] SEBASTIAN T, LACKNER M A. Characterization of the unsteady aerodynamics of offshore floating wind turbines[J]. Wind Energy, 2013, 16(3): 339-352.
[4] JONKMAN J M. FAST User's Guide[J]. National Renewable Energy Laboratory Technical Report, 2005.
[5] 饶吉来. 风电机组结构动力响应研究[J]. 可再生能源, 2024, 42(1): 51-56.
[6] HU D, ZENG L, DENG L, et al. Aerodynamic wake characteristics analysis of floating offshore wind turbine under platform pitching and yawing motions[J]. Journal of Renewable and Sustainable Energy, 2023, 15(3): 3-4.
[7] 常卡, 王坤鹏. 风浪联合下导管架式风机结构疲劳特性研究[J]. 可再生能源, 2021, 39(12): 1617-1622.
[8] MENG H, SU H, GUO J, et al. Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions[J]. Renewable Energy, 2022, 181: 1325-1337.
[9] SEBASTIAN T, LACKNER M. Analysis of the induction and wake evolution of an offshore floating wind turbine[J]. Energies, 2012, 5(4): 968-1000.
[10] 顾晓庆, 梁栋炀, 束加庆, 等. 漂浮式风机纵摇模态阻尼特性及变桨控制优化[J/OL]. 高电压技术, 2025.
[11] 刘杨, 罗子帆, 陆彬彬, 等. 周期运动下海上浮式风机的气动性能数值模拟研究[J]. 水动力学研究与进展A辑, 2024, 39(2): 282-291.
[12] 唐润东, 曹人靖. 考虑纵摇工况的漂浮式海上风机尾流特性数值研究[J]. 新能源进展, 2023, 11(2): 93-99.
[13] GIANERT H. Airplane propellers[J]. 1935.
[14] MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: theory, design and application[M]. John Wiley & Sons, 2010.
[15] GLAUERT H. A general theory of the autogyro[R]. HM Stationery Office, 1926.
[16] PITT D M, PETERS D A. Theoretical prediction of dynamic-inflow derivatives[J]. 1980.