漂浮式风机系统的风机和浮式基础由不同单位研制,设计过程需要考虑数据传递问题,针对该问题以10 MW漂浮式风机的OOstar基础为研究对象,建立全耦合、限制性强耦合及限制性弱耦合3种模型,用不同计算模型进行时域模拟及频谱分析,探究不同耦合方法导致浮式风机系统动力响应的差异。结果表明,与限制性弱耦合相比,限制性强耦合的计算结果更接近全耦合计算结果;对比限制性强耦合与全耦合计算结果,纵荡差异在10%以内,垂荡差异在5%以内,纵摇差异在2%以内,1号缆系缆力差异在5%以内;对于关键响应参数,限制性强耦合结果稍大于全耦合结果,因此采用风机厂家提供的全耦合塔顶载荷作为输入数据进行浮式基础设计能够获得较可靠的结果。
The wind turbine and floating platform of the floating wind turbine system are developed by different units. The data transmission problem needs to be considered in the design process. Aiming at this problem, the 10 MW floating wind turbine and the OOstar platform of the response are taken as the research object. Three models of full coupling, restricted strong coupling and restricted weak coupling are established. Time domain simulation and spectrum analysis are carried out with different calculation models to explore the difference of dynamic response of floating wind turbine system caused by different coupling algorithms. The results show that compared with the restricted weak coupling, the calculation results of the restricted strong coupling are closer to the full coupling calculation results. By comparing the results of restricted strong coupling and full coupling, the difference of surge is less than 10 %, the difference of heave is less than 5 %, the difference of pitch is less than 2 %, and the difference of cable force of No.1 cable is less than 5 %. For the key response parameters, the restricted strong coupling results are slightly larger than the full coupling results. Therefore, the full coupling tower top load provided by the fan manufacturer is used as the input data for the floating platform design to obtain more reliable results.
2025,47(17): 104-110 收稿日期:2024-12-2
DOI:10.3404/j.issn.1672-7649.2025.17.017
分类号:TK83
基金项目:国家资助博士后研究人员计划(GZC20250176);国家地震工程科学中心自主课题基金(2025ZZB4007);广西科技重大专项(桂科(AA22068105))
作者简介:郭世博(2001-),女,硕士,研究方向为海上浮式风电
参考文献:
[1] 郑崇伟, 李崇银. 海上风能等级区划研究: 瓶颈与对策[J]. 中国科学院院刊, 2023, 38(4): 654-665.
[2] MASCIOLA M, ROBERTSON A, JONKMAN J M, et al. Investigation of a FAST-OrcaFlex coupling module for integrating turbine and mooring dynamics of offshore floating wind turbines[C]//International Conference on Offshore Wind Energy and Ocean Energy, Beijing, China, 2011.
[3] WANG K, LUAN C, MOAN T, et al. Comparative Study of a FVAWT and a FHAWT with a Semi-submersible Floater[C] //Proceedings of the Twenty-fouth (2014) International Offshore and Polar Engineering Conference, Busan, Korea, 2014.
[4] GUEDES C D S J R. Coupled dynamic analysis of spar-type floating wind turbine under different wind and wave loading[J]. Marine Systems Ocean Technology, 2021, 16(3-4): 1-30.
[5] 邓万如, 刘利琴, 李昊, 等. 海上浮式风机的动力学建模与响应分析(英文)[J]. 船舶力学, 2023, 27(6): 789-802.
[6] 李焱, 唐友刚, 朱强, 等. 考虑系缆拉伸-弯曲-扭转变形的浮式风力机动力响应研究[J]. 工程力学, 2018, 35(12): 229-239.
[7] 张成祥. 浮式风机系统耦合分析方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[8] 徐应瑜, 胡志强, 刘格梁. 10 MW级海上浮式风机运动特性研究[J]. 海洋工程, 2017, 35(3): 44-51.
XU Y Y, HU Z Q, LIU G L. Kinetic characteristics research of the 10 MW-level offshore floating wind turbine[J]. The Ocean Engineering, 2017, 35(3): 44-51.
[9] ZHANG X, HE L, MA G, et al. Mechanism of mooring line breakage and shutdown opportunity analysis of a semi-submersible offshore wind turbine in extreme operating gust[J]. Ocean Engineering, 2023, 268: 113399.
[10] 戴琼霖, 刘明月, 杨灿, 等. 浮式风机限制性耦合与全耦合数值计算[J]. 船舶工程, 2023, 45(7): 170-178.
[11] Calculation of Floating Wind Turbine SINTEF O. SIMA user guide[M]. Trondheim, Norway: SINTEF Ocean, 2021.
[12] 中国船级社. 海上移动平台入级与建造规范[S]. 北京: 人民交通出版社, 2020.
[13] BAK C, ZAHLE F, BITSCHE R, et al. The DTU 10-MW reference wind turbine[R]. Denmark: DTU, 2013.
[14] PEGALAJAR-JURADO A, MADSEN F J, BORG M, et al. Deliverable D4.5 State-of-the-art models for the two LIFES50+10 MW floater concepts[R]. Norway: DTU, 2018.
[15] 刘东旭. 半潜式平台系泊缆配重优化方法研究[D]. 天津: 天津大学, 2022.
[16] 中国船级社. 材料与焊接规范[S]. 北京: 中国船级社, 2023.
[17] 中国船级社. 海上浮动设施入籍规范[S]. 北京: 中国船级社, 2023.
[18] FALTINSEN O M. 船舶与海洋工程环境载荷[M]. 上海: 上海交通大学出版社, 2008.