本文基于三维势流理论,利用AQWA软件对四月池驳船式浮式风机进行了风浪联合海况的性能分析。首先,测得频域内浮式风机的附加质量、辐射阻尼和一阶波浪力水动力系数,分析水动力系数随入射波频率变化。其次,监测了时域内四月池浮式风机在波浪环境和不同风速条件下风浪联合环境下的运动响应,比较了不同风速对运动响应的影响程度。结果表明,整体的纵摇角度对风速的大小非常敏感,而垂荡幅值随风速变化不明显。同时对比不同月池结构的纵摇角度,在低风速条件下四月池结构具有较好的稳定性。
Based on potential flow, using AQWA study motion characteristics of barge-type floating wind turbine (FOWT) with four moonpools under wave and wind. Firstly,the important hydrodynamic coefficients of FOWT, such as added mass、radiation damping and first-order wave force, are investigated in frequency domain, and then the relationship between hydrodynamic coefficients and incident wave frequency is analyzed. Secondly,the motion response of FOWT under wave and different speed of wind are monitored,and the influences are compared with different wind conditions. The results show that pitch amplitude is very sensitive by wind speed,however heave motion is contrary to pitch。And then compared with the pitch of different moonpool structures, the four moonpool structures have better stability under low wind speed.
2025,47(17): 111-116 收稿日期:2024-12-12
DOI:10.3404/j.issn.1672-7649.2025.17.018
分类号:P752
作者简介:李越洋(1998-),硕士研究生,研究方向为船舶与海洋结构物流体性能
参考文献:
[1] 李耀华, 孔力. 发展太阳能和风能发电技术加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-433.
[2] BRETON S P, MOE G. Status, plans and technologies for offshore wind turbines in Europe and North America[J]. Renewable energy, 2009, 34(3): 646-654.
[3] JONKMAN J, BUHL M J. Loads analysis of a floating offshore wind turbine using fully coupled simulation. Reprint Conference Paper NREL[R]. CP-500-41714, 2007.
[4] BEYER F, CHOISNET T, KRETSCHMER M, et al. Coupled MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation compared to wave tank model test data[C]//ISOPE International Ocean and Polar Engineering Conference. ISOPE, 2015: ISOPE-I-15-272.
[5] BORISADE F, CHOISNET T, CHENG P W. Design study and full scale MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 753(9): 092002.
[6] MAYILVAHANAN A C, SELVAM P R. Time domain response analysis of barge floater supporting an offshore wind turbine[J]. The International Journal of Ocean and Climate Systems, 2011, 2(4): 303-314.
[7] VIJAY K G, KARMAKAR D, UZUNOGLU E, et al. Performance of barge-type floaters for floating wind turbine[J]. Progress in Renewable Energies Offshore, 2016, 637-645.
[8] 陈易人, 姚靳羽, 李明轩, 等. 带月池驳船式浮式风力机水动力性能[J]. 上海交通大学学报, 2024, 58(7): 965-982.
[9] IKOMA T, TAN L, MORITSU S, et al. Motion characteristics of a barge-type floating vertical-axis wind turbine with moonpools[J]. Ocean Engineering, 2021, 230: 109006.
[10] TAN L, IKOMA T, AIDA Y, et al. Mean wave drift forces on a barge-type floating wind turbine platform with moonpools[J]. Journal of Marine Science and Engineering, 2021, 9(7): 709.
[11] YANG R Y, WANG C W, HUANG C C, et al. The 1: 20 scaled hydraulic model test and field experiment of barge-type floating offshore wind turbine system[J]. Ocean Engineering, 2022, 247: 110486.
[12] CHUANG T C, YANG W H, YANG R Y. Experimental and numerical study of a barge-type FOWT platform under wind and wave load[J]. Ocean Engineering, 2021, 230: 109015.
[13] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2009.