为深入探究极端海况和施工误差下浮式风机系泊系统的动力特性,基于OrcaFlex数值模拟软件,建立了15 MW半潜式风机系泊平台耦合模型。计算了极端海况及施工误差因素对系泊系统动力响应的影响,包括平台稳性、位移幅值和系泊缆张力变化等关键参数。同时,针对停机后可能出现的断锚这一危险工况进行模拟分析,获取在断锚状态下系泊系统的受力分布和平台的运动响应情况。结果表明:极端海况断锚后3×1系泊布置形式纵摇变化较大且失去在位能力,3×2、3×3形式较为稳定,能保证浮式风机在位,且锚链安全系数符合规范要求。施工误差情况下风机横摇、纵摇和垂荡较为稳定,锚链安全系数符合规范要求,但纵荡极大,施工时应尽量避免系泊角度误差。
In order to deeply explore the dynamic characteristics of the floating wind turbine mooring system under extreme sea conditions and construction errors, a coupled model of a 15 MW semi-submersible wind turbine mooring platform was established based on the OrcaFlex numerical simulation software. The influence of extreme sea conditions and construction errors on the dynamic response of the mooring system was calculated, including key parameters such as platform stability, displacement amplitude, and mooring cable tension changes. At the same time, a simulation analysis was conducted for the dangerous condition of anchor breaking after shutdown, and the force distribution of the mooring system and the motion response of the platform under the anchor breaking state were obtained. The results show that after anchor breaking in extreme sea conditions, the 3×1 mooring arrangement has a large pitch change and loses its ability to stay in place. The 3×2 and 3×3 arrangements are relatively stable and can ensure that the floating wind turbine is in place, and the anchor chain safety factor meets the requirements of the specification. Under the condition of construction error, the roll, pitch and heave of the wind turbine are relatively stable, and the anchor chain safety factor meets the requirements of the specification, but the surge is extremely large, and the mooring angle error should be avoided as much as possible during construction.
2025,47(17): 117-123 收稿日期:2025-2-17
DOI:10.3404/j.issn.1672-7649.2025.17.019
分类号:U611.32
作者简介:邹大伟(1984-),男,高级工程师,研究方向为核能及海上风电项目的项目管理
参考文献:
[1] WANG K, CHU Y, HUANG S, et al. Preliminary design and dynamic analysis of constant tension mooring system on a 15 MW semi-submersible wind turbine for extreme conditions in shallow water[J]. Ocean Engineering, 2023, 283: 115089.
[2] XU S, GUEDES SOARES C. Mixture distribution model for extreme mooring tension and mooring fatigue analysis due to snap loads[J]. Ocean Engineering, 2021, 234: 109245.
[3] NIRANJAN R, RAMISETTI S B. Dynamic response of 15 mw floating wind turbine with non-redundant and redundant mooring systems under extreme and accidental conditions[J]. Journal of Offshore Mechanics and Arctic Engineering, 2023, 145(6): 062002.
[4] 单鹏昊, 任慧龙, 李辉, 等. 极限海况下Spar平台系泊系统耦合动力分析[J]. 海洋工程, 2013, 31(2): 35-40.
[5] 孟星宇, 姜贞强, 徐郎君, 等. 浮式风机浅水系泊松弛-张紧特性[J]. 中国海洋平台, 2024, 39(2): 1-11,55.
[6] 唐梓珈. 浮式风机平台的系泊系统研究与耦合分析[D]. 长沙: 湖南大学, 2016.
[7] 邓露, 唐梓珈, 王彪, 等. 半潜型浮式风机运动特征及系泊系统的研究[J]. 船舶工程, 2016, 38(8): 1-6,26.
[8] 袁林. 极端海况下浮式风机系泊系统耦合动力响应研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[9] LIU S, CHUANG Z, WANG K, et al. Structural parametric optimization of the VolturnUS-S semi-submersible foundation for a 15 MW floating offshore wind turbine[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1181.
[10] GAERTNER E, RINKER J, SETHURAMAN L, et al. IEA wind TCP task 37: definition of the IEA 15-Megawatt offshore reference wind turbine: NREL/TP-5000-75698[R]. National Renewable Energy Lab. (NREL), Golden, CO (United States), 2020.
[11] 王晨昊. Dtu10MW风机半潜式平台系泊设计与研究[D]. 镇江: 江苏科技大学, 2023.
[12] 石兵. 浅海半潜式漂浮风机的新型系泊系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2022.
[13] LIN L, CHEN M, YANG P, et al. Design and hydrodynamic performance of 15 MW Spar-type floating offshore wind turbine platform[J]. Chinese Journal of Ship Research, 2024, 19(4): 71-81.
[14] 黄心伟, 柳亦兵, 刘剑韬, 等. 半潜式平台结构尺寸对海上风电机组稳定性的影响研究[J]. 动力工程学报, 2024, 44(12): 1878-1886.
[15] American Petroleum Institute (API). Design and analysis of stationkeeping systems for floating structures[S]. Washington: API, 2005.