随着全球对清洁能源需求的增长,浮动光伏技术得到了广泛应用,其能够将光伏系统部署在水体表面,从而节约土地资源。本文提出一种配备抗振装置的浮动光伏平台,专门设计用于承受波浪和风等恶劣海洋环境条件。该研究采用数值模拟和水动力分析方法,评估平台在不同波周期和波高下的运动响应,特别关注平台的起伏和冲击位移变化。模拟结果表明,平台的起伏和冲击位移随着波高和波周期的增加而增大。值得注意的是,在长波周期和高波浪条件下,平台的运动响应变得更加明显。然而,在抗振装置的帮助下,平台的位移迅速稳定,最大起伏和冲击位移保持在可接受范围内,从而确保了在海洋条件下的稳定性。研究结果表明,配备抗振装置的浮动光伏平台表现出强大的抗振性能,有效缓解了极端海况的影响,提高了光伏模块的稳定性。本研究为浮动光伏技术在恶劣海洋环境中的应用奠定了重要的理论基础,并为未来大规模海上光伏电站的设计和优化提供了有力支持。
With the growth of global demand for clean energy, floating photovoltaic technology has been widely used because it enables the deployment of photovoltaic systems on the surfaces of water bodies, thereby conserving land resources. In this paper, we present a floating photovoltaic platform equipped with an oscillation-reducing device, specifically designed to withstand harsh marine conditions such as waves and wind. This study employs numerical simulations and hydrodynamic analyses to evaluate the platform's motion response under varying wave periods and heights, focusing particularly on the changes in heave and surge displacements. The simulation results indicate that both heave and surge displacements of the platform increase with wave height and period. Notably, under conditions of long wave periods and high waves, the platform's motion response becomes more pronounced. However, with the aid of the oscillation-reducing device, the platform's displacement stabilizes rapidly, with both maximum heave and surge displacements remaining within acceptable limits, thus ensuring stability in marine conditions. The findings demonstrate that the FPV platform equipped with the anti-oscillation device exhibits robust oscillation-reducing performance, effectively mitigating the impact of extreme sea conditions and enhancing both stability and power generation efficiency of the photovoltaic modules. This study establishes a significant theoretical foundation for the application of floating photovoltaic technology in harsh marine environments and offers robust support for the design and optimization of large-scale offshore photovoltaic power plants in the future.
2025,47(17): 129-136 收稿日期:2025-4-2
DOI:10.3404/j.issn.1672-7649.2025.17.021
分类号:U672.1
基金项目:国家自然科学基金(52271293)
作者简介:吴登凯(1998-),男,硕士,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] 岳云峰, 彭欣然, 王洪庆, 等. 海上漂浮光伏发电技术及其融合发展展望[J]. 南方能源建设, 2024, 11(2): 42-50.
[2] 马超, 张子豪, 吴润泽, 等. 漂浮光伏布设水域的蒸发模型研究和实证[J]. 水力发电学报, 2023, 42(11): 59-67.
[3] 郑洁, 杨淑涵, 柳存根, 等. 海洋可再生能源装备技术发展研究[J]. 中国工程科学, 2023, 25(3): 23-32.
[4] 高捷, 赵斌, 杨超, 等. 海上储能技术发展动态与前景[J]. 新能源进展, 2020, 8(2): 136-142.
[5] 李华军, 刘福顺, 杜君峰, 等. 海洋工程发展趋势与技术挑战[J]. 海岸工程, 2022, 41(4): 283-300.
[6] WANG J, LUND P D. Review of recent offshore photovoltaics development[J]. Energies, 2022, 15(20): 7462.
[7] SOLOMIN E, SIROTKIN E, CUCE E, et al. Hybrid floating solar plant designs: a review[J]. Energies, 2021, 14(10): 2751.
[8] YANG L W, GAO X Q, LI Z C. An overview of the policies and models of integrated development for solar and wind power generation in China[J]. Research in Cold and Arid Regions, 2023, 15(3): 122-131.
[9] SHAH Y T. Advanced Non-Thermal Power Generation Systems[M]. CRC Press, 2023.
[10] WANG Q. Maritime law enforcement concerning offshore energy platforms: Navigating international law constraints and challenges[J]. Marine Policy, 2024, 170: 106370.
[11] SHAH Y T. Hybrid energy systems: Strategy for industrial decarbonization[M]. CRC Press, 2021.
[12] 练继建, 陈艳佳, 王孝群, 等. 海上光伏外围防护-固定式透空堤结构型式研究进展[J]. 太阳能学报, 2024, 45(8): 332-341.
[13] 张景飞, 易玲, 郭攀. 海上漂浮式光伏阵列单浮体结构设计[J]. 舰船科学技术, 2023, 45(19): 104-110.
ZHANG J F, YI L, GUO P. Single floating structure design of floating photovoltaic array at sea [J]. Ship Science and Technology, 2023, 45(19): 104-110.
[14] WANG S, MOAN T, GAO Z. Methodology for global structural load effect analysis of the semi-submersible hull of floating wind turbines under still water, wind, and wave loads[J]. Marine Structures, 2023, 91: 103463.
[15] XU W, SUN Y, HE Z. Hydrodynamic performance study of floating photovoltaic arrays with multiple floating bodies[J]. Applied Ocean Research, 2024, 153: 104286.
[16] LI G, STANSBY P, DRAYCOTT S. General formulation for floating body with elastic mooring in irregular waves: A hybrid linear and nonlinear framework and validation[J]. Marine Structures, 2024, 96: 103623.
[17] WEYMOUTH G D, YUE D K P. Conservative volume-of-fluid method for free-surface simulations on cartesian-grids[J]. Journal of Computational Physics, 2010, 229(8): 2853-2865.
[18] YU S R, YUAN Z M, INCECIK A. Motion control of floating wind-wave energy platforms[J]. Marine Energy Research, 2025, 2(1): 10001.
[19] WARD D. Reducing tower fatigue through modelling and analysis of pitch-to-stall, back twist blade, for floating offshore wind turbines[D]. 2020.
[20] BASHETTY S, OZCELIK S. Review on dynamics of offshore floating wind turbine platforms[J]. Energies, 2021, 14(19): 6026.
[21] WANG W, FAN S, YOU Y, et al. Numerical and experimental study on an anti-oscillation device for the DeepCwind floating semi-submersible turbine platform[J]. Energies, 2023, 16(3): 1034.
[22] WANG W, ZHAO C, JIA P, et al. Numerical simulation and experimental study on perforated heave plate of a DeepCwind floating wind turbine platform[J]. Ships and Offshore Structures, 2023, 18(3): 438-449.